Skip to main content
Log in

Flower color polymorphism maintained by overdominant selection in Sisyrinchium sp.

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Negative frequency-dependent selection derived from positive frequency-dependent foraging is the best-known selection force maintaining genetic polymorphism within a population. However, in flowering plants, positive frequency-dependent foraging by pollinators is expected to accelerate the loss of low-frequency morphs by conferring a fitness advantage to the common morph, leading to monomorphism. In Japan, a non-native species, Sisyrinchium sp., exhibits conspicuous flower color polymorphism within a population comprising both purple morphs (homozygous recessive) and white morphs (heterozygous or homozygous dominant). Here we quantified genotype-specific reproductive success in order to reveal the contribution of overdominant selection on the maintenance of flower color polymorphism in this species. In artificial pollination experiments using individuals with identified genotypes, female reproductive success was higher in the heterozygote than in either homozygote. The frequency of purple morphs in natural populations (ca. 31 %) is similar to the frequency predicted by overdominant selection (25 %). Our results suggest that overdominant selection contributes to the maintenance of color morphs in the natural population of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashman T-L, Majetic CJ (2006) Genetic constraints on floral evolution: a review and evaluation of patterns. Heredity 96:343–352. doi:10.1038/sj.hdy.6800815

    Article  PubMed  Google Scholar 

  • Chauveau O, Eggers L, Raquin C et al (2011) Evolution of oil-producing trichomes in Sisyrinchium (Iridaceae): insights from the first comprehensive phylogenetic analysis of the genus. Ann Bot 107:1287–1312. doi:10.1093/aob/mcr080

    Article  PubMed Central  PubMed  Google Scholar 

  • Coe EH, Neuffer MG, Hoisington DA (1988) The genetics of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 81–258

    Google Scholar 

  • Dempster ER (1955) Maintenance of genetic heterogeneity. Cold Spring Harb Symp Quant Biol 20:25–32

    Article  CAS  PubMed  Google Scholar 

  • Dormont L, Delle-Vedove R, Bessière JM et al (2010) Rare white-flowered morphs increase the reproductive success of common purple morphs in a food-deceptive orchid. New Phytol 185:300–310. doi:10.1111/j.1469-8137.2009.03052.x

    Article  CAS  PubMed  Google Scholar 

  • Eckhart VM, Rushing NS, Hart GM, Hansen JD (2006) Frequency-dependent pollinator foraging in polymorphic Clarkia xantiana ssp. xantiana populations: implications for flower colour evolution and pollinator interactions. Oikos 112:412–421

    Article  Google Scholar 

  • Ford EB (1945) Polymorphism. Biol Rev 52:691–695. doi:10.1111/j.1469-185X.1945.tb00315.x

    Google Scholar 

  • Gigord L, Macnair M, Smithson A (2001) Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soò. Proc Natl Acad Sci USA 98:6253–6255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hellens RP, Moreau C, Lin-Wang K et al (2010) Identification of Mendel’s white flower character. PLoS One 5:e13230. doi:10.1371/journal.pone.0013230

    Article  PubMed Central  PubMed  Google Scholar 

  • Majetic CJ, Raguso RA, Ashman T-L (2008) The impact of biochemistry vs. population membership on floral scent profiles in colour polymorphic Hesperis matronalis. Ann Bot 102:911–922. doi:10.1093/aob/mcn181

    Article  PubMed Central  PubMed  Google Scholar 

  • Makino T (1956) An illustrated flora of Japan, with the cultivated and naturalised plants. Hokuryukan, Tokyo

    Google Scholar 

  • Maynard-Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mojonnier LE, Rausher MD (1997) Selection on a floral color polymorphism in the common morning glory (Ipomoea purpurea): the effects of overdominance in seed size. Evolution 51:608–613

    Article  Google Scholar 

  • Norton NA, Fernando MTR, Herlihy CR, Busch JW (2015) Reproductive character displacement shapes a spatially structured petal color polymorphism in Leavenworthia stylosa. Evolution. doi:10.1111/evo.12659

  • Parra-Tabla V, Vargas CF, Eguiarte LE (1998) Is Echeveria gibbiflora (Crassulaceae) fecundity limited by pollen availability? An experimental study. Funct Ecol 12:591–595. doi:10.1046/j.1365-2435.1998.00229.x

    Article  Google Scholar 

  • Paulsen S, Rausher M (2000) Floral-color polymorphism in Ipomoea purpurea: biased inheritance of the dark allele is not a general explanation for its maintenance. J Hered 91:491–494

    Article  CAS  PubMed  Google Scholar 

  • Rausher MD, Fry JD (1993) Effects of a locus affecting floral pigmentation in Ipomoea purpurea on female fitness components. Genetics 134:1237–1247

    PubMed Central  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Salzmann CC, Schiestl FP (2007) Odour and colour polymorphism in the food-deceptive orchid Dactylorhiza romana. Plant Syst Evol 267:37–45. doi:10.1007/s00606-007-0560-z

    Article  Google Scholar 

  • Schemske DW, Bierzychudek P (2007) Spatial differentiation for flower color in the desert annual Linanthus parryae: was Wright right? Evolution 61:2528–2543. doi:10.1111/j.1558-5646.2007.00219.x

    Article  PubMed  Google Scholar 

  • Silva DP, Moisan-De-Serres J, Souza DC et al (2013) Efficiency in pollen foraging by honey bees: time, motion, and pollen depletion on flowers of Sisyrinchium palmifolium. J Pollinat Ecol 11:27–32

    Google Scholar 

  • Sinervo B, Lively C (1996) The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380:240–243

    Article  CAS  Google Scholar 

  • Smithson A, MacNair MR (1997) Negative frequency-dependent selection by pollinators on artificial flowers without rewards. Evolution 51:715–723

    Article  Google Scholar 

  • Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annu Rev Ecol Syst 12:253–279. doi:10.2307/2097112

    Article  Google Scholar 

  • Streisfeld MA, Kohn JR (2005) Contrasting patterns of floral and molecular variation across a cline in Mimulus aurantiacus. Evolution 59:2548–2559

    Article  CAS  PubMed  Google Scholar 

  • Tacuatia LO, Souza-Chies TT, Flores AM et al (2012) Cytogenetic and molecular characterization of morphologically variable Sisyrinchium micranthum (Iridaceae) in southern Brazil. Bot J Linn Soc 169:350–364

    Article  Google Scholar 

  • Tacuatiá LO, Eggers L, Kaltchuk-Santos E, Souza-Chies TT (2012) Population genetic structure of Sisyrinchium micranthum Cav. (Iridaceae) in Itapuã State Park, Southern Brazil. Genet Mol Biol 35:99–105

    Article  PubMed Central  PubMed  Google Scholar 

  • Takahashi Y, Yoshimura J, Morita S, Watanabe M (2010) Negative frequency-dependent selection in female color polymorphism of a damselfly. Evolution 64:3620–3628. doi:10.1111/j.1558-5646.2010.01083.x

    Article  PubMed  Google Scholar 

  • von Wettberg EJ, Stanton ML, Whittall JB (2010) How anthocyanin mutants respond to stress: the need to distinguish between stress tolerance and maximal vigour. Evol Ecol Res 12:457–476

    Google Scholar 

  • Weiss MR (1995) Floral color change: a widespread functional convergence. Am J Bot 82:167–185. doi:10.2307/2445525

    Article  Google Scholar 

  • Yamaguchi H, Hirai S (1987) Natural hybridization and flower color inheritance in Sisyrinchium rosulatum Bickn. Weed Res 32:38–45

    Google Scholar 

  • Yeaman S, Chen Y, Whitlock MC (2010) No effect of environmental heterogeneity on the maintenance of genetic variation in wing shape in Drosophila melanogaster. Evolution 64:3398–3408. doi:10.1111/j.1558-5646.2010.01075.x

    Article  PubMed  Google Scholar 

  • Zufall RA, Rausher MD (2003) The genetic basis of a flower color polymorphism in the common morning glory (Ipomoea purpurea). J Hered 94:442–448. doi:10.1093/jhered/esg098

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by JSPS KAKENHI Grant No. 26650154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuma Takahashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 969 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, Y., Takakura, Ki. & Kawata, M. Flower color polymorphism maintained by overdominant selection in Sisyrinchium sp.. J Plant Res 128, 933–939 (2015). https://doi.org/10.1007/s10265-015-0750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0750-7

Keywords

Navigation