Skip to main content
Log in

Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The phytohormone auxin plays a pivotal role in various developmental aspects in land plants. However, little is known of the auxin response and distribution in non-vascular plants. In this study, we made transgenic plants of the liverwort Marchantia polymorpha which express the uidA (GUS) reporter gene under control of the soybean auxin-inducible promoter, ProGH3, and used it to indirectly monitor auxin-mediated transcriptional activation in planta. Transgenic plants carrying ProGH3:GUS showed GUS activity in an auxin-dependent manner. Histochemical GUS staining was observed at the bottom of gemma cups in the process of vegetative propagation. Significant GUS activity was also detected around the gametophyte–sporophyte junction as well as the developing sporophyte after fertilization. These results suggest that the activity of auxin is crucial in both gametophyte and sporophyte development in M. polymorpha, and that the mechanism for auxin-mediated transcriptional activation had already been established when plants emerged on the terrestrial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnes CR, Land WJG (1908) Bryological papers. II. The origin of the cupule of Marchantia. Bot Gaz 46:401–409

    Article  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  CAS  Google Scholar 

  • Bhalerao RP, Bennett MJ (2003) The case for morphogens in plants. Nat Cell Biol 5:939–943

    Article  PubMed  CAS  Google Scholar 

  • Bierfreund NM, Reski R, Decker EL (2003) Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens. Plant Cell Rep 21:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Binns AN, Maravolo NC (1972) Apical dominance, polarity, and adventitious growth in Marchantia polymorpha. Am J Bot 59:691–696

    Article  Google Scholar 

  • Bowman JL, Floyd SK, Sakakibara K (2007) Green genes-comparative genomics of the green branch of life. Cell 129:229–234

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    Article  PubMed  CAS  Google Scholar 

  • Chiyoda S, Ishizaki K, Kataoka H, Yamato KT, Kohchi T (2008) Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep 27:1467–1473

    Article  PubMed  CAS  Google Scholar 

  • Cooke TJ, Poli D, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49:319–338

    Article  PubMed  CAS  Google Scholar 

  • Davidonis GH, Munroe MH (1972) Apical dominance in Marchantia: correlative inhibition of neighbor lobe growth. Bot Gaz 133:177–184

    Article  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426:147–153

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Sakaguchi H, Hiwatashi Y, Wagstaff SJ, Ito M, Deguchi H, Sato T, Hasebe M (2008) Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evol Dev 10:176–186

    Article  PubMed  CAS  Google Scholar 

  • Gaal DJ, Dufresne SJ, Maravolo NC (1982) Transport of 14C-indoleacetic acid in the hepatic Marchantia polymorpha. Bryologist 85:410–418

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  PubMed  CAS  Google Scholar 

  • Hagen G, Kleinschmidt A, Guilfoyle T (1984) Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162:147–153

    Article  CAS  Google Scholar 

  • Hagen G, Martin G, Li Y, Guilfoyle TJ (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol 17:567–579

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi T, Kadota A, Hasebe M, Wada M (2002) Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Plant Cell 14:373–386

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki K, Chiyoda S, Yamato KT, Kohchi T (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49:1084–1091

    Article  PubMed  CAS  Google Scholar 

  • Jang G, Yi K, Pires N, Menand B, Dolan L (2011) RSL genes are sufficient for rhizoid system development in early diverging land plants. Development 138:2273–2281

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kaul KM, Mitra GC, Tripathi BK (1962) Responses of Marchantia in aseptic culture to well-known auxins and antiauxins. Ann Bot 26:447–467

    CAS  Google Scholar 

  • Larkin PJ, Gibson JM, Mathesius U, Weinman JJ, Gartner E, Hall E, Tanner GJ, Rolfe BG, Djordjevic MA (1996) Transgenic white clover. Studies with the auxin-responsive promoter, GH3, in root gravitropism and lateral root development. Transgenic Res 5:325–335

    Article  PubMed  CAS  Google Scholar 

  • Larue CD, Narayanaswami S (1957) Auxin inhibition in the liverwort Lunularia. New Phytol 56:61–70

    Article  Google Scholar 

  • Lau S, Jurgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wu YH, Hagen G, Guilfoyle T (1999) Expression of the auxin-inducible GH3 promoter/GUS fusion gene as a useful molecular marker for auxin physiology. Plant Cell Physiol 40:675–682

    Article  CAS  Google Scholar 

  • Liu ZB, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ (1994) Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6:645–657

    PubMed  CAS  Google Scholar 

  • Maravolo NC (1976) Polarity and localization of auxin movement in hepatic, Marchantia polymorpha. Am J Bot 63:526–531

    Article  CAS  Google Scholar 

  • Maravolo NC (1980) Control of development in hepatics. Bull Torrey Bot Club 107:308–324

    Article  CAS  Google Scholar 

  • Maravolo NC, Voth PD (1966) Morphogenic effects of three growth substances on Marchantia gemmalings. Bot Gaz 127:79–86

    Article  CAS  Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M, Mokoveychuk A, Wang JY, Moritz T, Greve M, Benfy PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Prigge MJ, Lavy M, Ashton NW, Estelle M (2010) Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr Biol 20:1–6

    Article  Google Scholar 

  • Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    PubMed  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  • Schneider MJ, Troxler RF, Voth PD (1967) Occurrence of indoleacetic acid in bryophytes. Bot Gaz 128:174–179

    Article  CAS  Google Scholar 

  • Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP, Sandberg G (2003) Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101

    Article  PubMed  CAS  Google Scholar 

  • Smith GM (1955) Cryptogamic botany. Bryophytes and pteridophytes, vol II. McGraw-Hill Book Company, Inc., New York, pp 46–56

    Google Scholar 

  • Sohlberg JJ, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical–basal patterning of the Arabidopsis gynoecium. Plant J 47:112–123

    Article  PubMed  CAS  Google Scholar 

  • Takanashi K, Sugiyama A, Yazaki K (2011) Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta 234:73–81

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738–2754

    Article  PubMed  CAS  Google Scholar 

  • Teichmann T, Bolu-Arianto WH, Olbrich A, Langenfeld-Heyser R, Gobel C, Grzeganek P, Feussner I, Hansch R, Polle A (2008) GH3:GUS reflects cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiol 28:1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Thimann KV (1938) Hormones and the analysis of growth. Plant Physiol 13:437–449

    Article  PubMed  CAS  Google Scholar 

  • Thomas RJ (1980) Cell elongation in hepatics: the seta system. Bull Torrey Bot Club 107:339–345

    Article  Google Scholar 

  • Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ (1995) Composite structure of auxin response elements. Plant Cell 7:1611–1623

    PubMed  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999a) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999b) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319

    Article  PubMed  CAS  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guédon Y, Armitage L, Picard F, Guyomarc’h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Thomas J. Guilfoyle for GH3:GUS and DR5:GUS plasmids. We appreciate John L. Bowman, Sandra Floyd and Ryuichi Nishihama for critical reading of this manuscript. This work was supported by KAKENHI Grant-in-Aid for Scientific Research on Priority Area (No. 23012025 to T.K.), Scientific Research on Innovative Area (No. 23119510 to K.I.), from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Young Scientists B (No. 22770035 to K.I.) from the Japan Society for the Promotion of Science; the Asahi Glass Foundation (to K.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Kohchi.

Additional information

K. Ishizaki and M. Nonomura contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishizaki, K., Nonomura, M., Kato, H. et al. Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha . J Plant Res 125, 643–651 (2012). https://doi.org/10.1007/s10265-012-0477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0477-7

Keywords

Navigation