Skip to main content
Log in

Power-law rheology analysis of cells undergoing micropipette aspiration

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Accurate quantification of the mechanical properties of living cells requires the combined use of experimental techniques and theoretical models. In this paper, we investigate the viscoelastic response of suspended NIH 3T3 fibroblasts undergoing micropipette aspiration using power-law rheology model. As an important first step, we examine the pipette size effect on cell deformation and find that pipettes larger than ~7 μm are more suitable for bulk rheological measurements than smaller ones and the cell can be treated as effectively continuum. When the large pipettes are used to apply a constant pressure to a cell, the creep deformation is better fitted with the power-law rheology model than with the liquid drop or spring-dashpot models; magnetic twisting cytometry measurement on the rounded cell confirms the power-law behavior. This finding is further extended to suspended cells treated with drugs targeting their cytoskeleton. As such, our results suggest that the application of relatively large pipettes can provide more effective assessment of the bulk material properties as well as support application of power-law rheology to cells in suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An SS, Fabry B, Trepat X, Wang N, Fredberg JJ (2006) Do biophysical properties of the airway smooth muscle in culture predict airway hyperresponsiveness. Am J Respir Cell Mol Biol 35(1): 55–64

    Article  Google Scholar 

  • Baaijens FPT, Trickey WR, Laursen TA, Guilak F (2005) Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte. Ann Biomed Eng 33(4): 492–499

    Article  Google Scholar 

  • Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75(4): 2038–2049

    Article  Google Scholar 

  • Burridge K, Kelly T, Mangeat P (1982) Nonerythrocyte spectrins: actin-membrane attachment proteins occurring in many cell types. J Cell Biol 95(2 Pt 1): 478–486

    Article  Google Scholar 

  • Bursac P, Fabry B, Trepat X, Lenormand G, Butler JP, Wang N, Fredberg JJ, An SS (2007) Cytoskeleton dynamics: fluctuations within the network. Biochem Biophys Res Commun 355(2): 324–330

    Article  Google Scholar 

  • Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435(7040): 365–369

    Article  Google Scholar 

  • Dahl KN, Engler AJ, Pajerowski JD, Discher DE (2005) Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys J 89(4): 2855–2864

    Article  Google Scholar 

  • Danowski BA (1989) Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. J Cell Sci 93(Pt 2): 255–266

    Google Scholar 

  • Desprat N, Richert A, Simeon J, Asnacios A (2005) Creep function of a single living cell. Biophys J 88(3): 2224–2233

    Article  Google Scholar 

  • Drury JL, Dembo M (2001) Aspiration of human neutrophils: effects of shear thinning and cortical dissipation. Biophys J 81(6): 3166–3177

    Article  Google Scholar 

  • Elson EL (1988) Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem 17: 397–430

    Article  Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001a) Scaling the microrheology of living cells. Phys Rev Lett 87(14): 148102

    Article  Google Scholar 

  • Fabry B, Maksym GN, Shore SA, Moore PE, Panettieri RA Jr, Butler JP, Fredberg JJ (2001b) Selected contribution: time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. J Appl Physiol 91(2): 986–994

    Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Taback NA, Millet EJ, Fredberg JJ (2003) Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev E Stat Nonlin Soft Matter Phys 68(4 Pt 1): 041914

    Google Scholar 

  • Fernandez P, Pullarkat PA, Ott A (2006) A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys J 90(10): 3796–3805

    Article  Google Scholar 

  • Flugge W (1967) Viscoelasticity. Blaisdell Publishing Company, Waltham

    Google Scholar 

  • Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5): 3689–3698

    Article  Google Scholar 

  • Guilak F, Erickson GR, Ting-Beall HP (2002) The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys J 82(2): 720–727

    Article  Google Scholar 

  • Herant M, Marganski WA, Dembo M (2003) The mechanics of neutrophils: synthetic modeling of three experiments. Biophys J 84(5 SU): 3389–3413

    Article  Google Scholar 

  • Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33(1): 15–22

    Article  Google Scholar 

  • Hoffman BD, Massiera G, Van Citters KM, Crocker JC (2006) The consensus mechanics of cultured mammalian cells. Proc Natl Acad Sci USA 103(27): 10259–10264

    Article  Google Scholar 

  • Jones WR, Ting-Beall PH, Lee GM, Kelley SS, Hochmuth RM, Guilak F (1999) Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech 32(2): 119–127

    Article  Google Scholar 

  • Lam J, Herant M, Dembo M, Heinrich V (2009) Baseline mechanical characterization of J774 macrophages. Biophys J 96(1): 248–254

    Article  Google Scholar 

  • Lee GY, Lim CT (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol 25(3): 111–118

    Article  MathSciNet  Google Scholar 

  • Lenormand G, Millet E, Fabry B, Butler JP, Fredberg JJ (2004) Linearity and time-scale invariance of the creep function in living cells. J R Soc Interface 1: 91–97

    Article  Google Scholar 

  • Lomakina EB, Spillmann CM, King MR, Waugh RE (2004) Rheological analysis and measurement of neutrophil indentation. Biophys J 87(6): 4246–4258

    Article  Google Scholar 

  • Mahaffy RE, Park S, Gerde E, Kas J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86(3): 1777–1793

    Article  Google Scholar 

  • Mijailovich SM, Kojic M, Zivkovic M, Fabry B, Fredberg JJ (2002) A finite element model of cell deformation during magnetic bead twisting. J Appl Physiol 93(4): 1429–1436

    Google Scholar 

  • Mitchison TJ, Charras GT, Mahadevan L (2008) Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. Semin Cell Dev Biol 19(3): 215–223

    Article  Google Scholar 

  • Mizutani T, Haga H, Kawabata K (2004) Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast. Cell Motil Cytoskeleton 59(4): 242–248

    Article  Google Scholar 

  • Nash GB, Obrien E, Gordonsmith EC, Dormandy JA (1989) Abnormalities in the mechanical-properties of red blood-cells caused by plasmodium-falciparum. Blood 74(2): 855–861

    Google Scholar 

  • Needham D, Hochmuth RM (1990) Rapid flow of passive neutrophils into a 4 microns pipet and measurement of cytoplasmic viscosity. J Biomech Eng 112(3): 269–276

    Article  Google Scholar 

  • Price LS, Leng J, Schwartz MA, Bokoch GM (1998) Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol Biol Cell 9(7): 1863–1871

    Google Scholar 

  • Roca-Cusachs P, Almendros I, Sunyer R, Gavara N, Farre R, Navajas D (2006) Rheology of passive and adhesion-activated neutrophils probed by atomic force microscopy. Biophys J 91(9): 3508–3518

    Article  Google Scholar 

  • Rosenbluth MJ, Lam WA, Fletcher DA (2006) Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J 90(8): 2994–3003

    Article  Google Scholar 

  • Sato M, Theret DP, Wheeler LT, Ohshima N, Nerem RM (1990) Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J Biomech Eng 112(3): 263–268

    Article  Google Scholar 

  • Schmid-Schonbein GW, Sung KL, Tozeren H, Skalak R, Chien S (1981) Passive mechanical properties of human leukocytes. Biophys J 36(1): 243–256

    Article  Google Scholar 

  • Semmrich C, Storz T, Glaser J, Merkel R, Bausch AR, Kroy K (2007) Glass transition and rheological redundancy in F-actin solutions. Proc Natl Acad Sci USA 104(51): 20199–20203

    Article  Google Scholar 

  • Smith BA, Tolloczko B, Martin JG, Grutter P (2005) Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys J 88(4): 2994–3007

    Article  Google Scholar 

  • Stamenovic D, Suki B, Fabry B, Wang N, Fredberg JJ (2004) Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress. J Appl Physiol 96(5): 1600–1605

    Article  Google Scholar 

  • Sunyer R, Trepat X, Fredberg JJ, Farre R, Navajas D (2009) The temperature dependence of cell mechanics measured by atomic force microscopy. Phys Biol 6(2): 25009

    Article  Google Scholar 

  • Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomaterialia 1: 15–30

    Article  Google Scholar 

  • Theret DP, Levesque MJ, Sato M, Nerem RM, Wheeler LT (1988) The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J Biomech Eng 110(3): 190–199

    Article  Google Scholar 

  • Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ (2007) Universal physical responses to stretch in the living cell. Nature 447(7144): 592–595

    Article  Google Scholar 

  • Trepat X, Lenormand G, Fredberg JJ (2008) Universality in cell mechanics. Soft Matter 4: 1750–1759

    Article  Google Scholar 

  • Trickey WR, Lee GM, Guilak F (2000) Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J Orthop Res 18(6): 891–898

    Article  Google Scholar 

  • Tsai MA, Frank RS, Waugh RE (1993) Passive mechanical behavior of human neutrophils: power-law fluid. Biophys J 65(5): 2078–2088

    Article  Google Scholar 

  • Tsai MA, Waugh RE, Keng PC (1998) Passive mechanical behavior of human neutrophils: effects of colchicine and paclitaxel. Biophys J 74(6): 3282–3291

    Article  Google Scholar 

  • Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3): C606–C616

    Google Scholar 

  • Wottawah F, Schinkinger S, Lincoln B, Ananthakrishnan R, Romeyke M, Guck J, Kas J (2005) Optical rheology of biological cells. Phys Rev Lett 94(9): 098103

    Article  Google Scholar 

  • Yanai M, Butler JP, Suzuki T, Sasaki H, Higuchi H (2004) Regional rheological differences in locomoting neutrophils. Am J Physiol Cell Physiol 287(3): C603–C611

    Article  Google Scholar 

  • Yeung A, Evans E (1989) Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys J 56(1): 139–149

    Article  Google Scholar 

  • Zhou EH (2006) PhD thesis: experimental and numerical studies on the viscoelastic behavior of living cells. Department of Civil Engineering. National University of Singapore, Singapore

  • Zhou EH, Lim CT, Quek ST (2005) Finite element simulation of the micropipette aspiration of a viscoelastic cell undergoing large deformation. Mech Adv Mater Struct 12(6): 501–512

    Article  Google Scholar 

  • Zhou EH, Quek ST, Lim CT (2010) Finite element simulation of micropipette aspiration based on power-law rheology (in preparation)

  • Zhou EH, Trepat X, Park CY, Lenormand G, Oliver MN, Mijailovich SM, Hardin C, Weitz DA, Butler JP, Fredberg JJ (2009) Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition. Proc Natl Acad Sci USA 106(26): 10632–10637

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. H. Zhou or C. T. Lim.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, E.H., Quek, S.T. & Lim, C.T. Power-law rheology analysis of cells undergoing micropipette aspiration. Biomech Model Mechanobiol 9, 563–572 (2010). https://doi.org/10.1007/s10237-010-0197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0197-7

Keywords

Navigation