Skip to main content
Log in

Activity rate of the seahorse Hippocampus reidi Ginsburg, 1933 (Syngnathidae)

  • Short Communication
  • Published:
acta ethologica Aims and scope Submit manuscript

Abstract

This study aimed to compare activity levels of male and female Hippocampus reidi and to relate the level of activity of the males to their height and brood pouch circumference. Females appeared to be highly active, while pregnant males were less active and non-pregnant males presented more balance in time investment between active and inactive behavior. There was a positive correlation between height, brood pouch circumference, and inactive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Alcala AC, Russ GR (1990) A direct test of the effects of protective management on abundance and yield of tropical marine resources. J Cons Perm Int Explor Mer 46:40–47

    Google Scholar 

  • Andrew NL, Mapstone BD (1987) Sampling and description of spatial pattern in marine ecology. Oceanogr Mar Biol Annu Rev 25:39–90

    Google Scholar 

  • Bardach JE (1958) On the movement of certain Bermuda reef fishes. Ecolog 39:139–146

    Article  Google Scholar 

  • Bell EM, Lockyear JF, Mcpherson ADM, Vincent ACJ (2003) First field studies of an endangered south African seahorse Hippocampus capensis. Environ Biol Fish 67:35–46

    Article  Google Scholar 

  • Berglund A, Rosenqvist G, Svensson I (1986) Reversed sex roles and parental energy investment in zygotes of two pipefish (Syngnathidae) species. Mar Ecol Prog Ser 29:209–215

    Article  Google Scholar 

  • Blake RW (1976) On seahorse locomotion. J Mar Biol Ass 56:939–949

    Article  Google Scholar 

  • Blake RW (1980) Undulatory median fin propulsion of two teleosts with different modes of life. Can J Zool 58:2116–2119

    Article  Google Scholar 

  • Boisseau J (1967) Recherche sur le controle hormonal de l’incubation chez l’Hippocampe. Rev Eur Endocr 4:197–234

    Google Scholar 

  • Cameron GN, Spencer SR (1985) Assessment of space-use patterns in the hispid cotton rat (Sigmodon hispidus). Oecol 68:133–139

    Article  Google Scholar 

  • Carcupino M, Baldacci A, Mazzini M, Franzoi P (2002) Functional significance of the male brood pouch in the reproductive strategies of pipefishes and seahorses: a morphological and ultrastructural comparative study on three anatomically different pouches. J Fish Biol 61:1465–1480

    Article  Google Scholar 

  • Castro ALC, Lino LALM, Xavier JHA, Cordeiro CAMM, Rosa IL (2008) Assessing diet composition of seahorses in the wild using a non destructive method: Hippocampus reidi (Teleostei: Syngnathidae) as a study-case. Neotrop Ichthyol 6(4):637–644

    Article  Google Scholar 

  • DeMartini EE (1993) Modeling the potential of fishery reserves for managing Pacific coral reef fishes. Fish Bull 91(3):414–427

    Google Scholar 

  • Dias TLP, Rosa IL (2003) Habitat preferences of a seahorse species, Hippocampus reidi (Teleostei: Syngnathidae) in Brazil. Aqua J Ichthyol Aquat Biol 6(4):165–176

    Google Scholar 

  • English SA, Wilkinson C, Baker VJ (1994) Survey manual for tropical marine resources. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Felício AKC, Rosa IL, Souto A, Freitas RHA (2006) Feeding behavior of the longsnout seahorse Hippocampus reidi Ginsburg, 1933. J Ethol 24:219–225

    Article  Google Scholar 

  • Foster SJ, Vincent ACJ (2004) Life history and ecology of seahorses: implications for conservation and management. J Fish Biol 65:1–61

    Article  Google Scholar 

  • Freret-Meurer NV, Andreata JV (2008) Field studies of a Brazilian seahorse population, Hippocampus reidi Ginsburg, 1933. Braz Arch Biol Technol 51(4):743–751

    Article  Google Scholar 

  • Friday N, Smith TD (2000) Measurement of photographic quality and individual distinctiveness for the photographic identification of humpback whales, Megaptera novaeangliae. Mar Mam Sci 16(2):355–374

    Article  Google Scholar 

  • Gervasi V, Brunberg S, Swenson JE (2006) An individual-based method to measure animal activity levels: a test on brown bears. Wildl Soc Bull 34(5):1314–1319

    Article  Google Scholar 

  • Hulbert SH (1984) Pseudoreplication and the design ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Hutt SJ, Hutt C (1978) Direct observation and measurement of behavior. Thomas, Springfield

    Google Scholar 

  • Kvarnemo C, Moore GI, Jones AG, Nelson WS, Avise JC (2000) Monogamous pair bonds and mate switching in the western Australian seahorse Hippocampus subelongatus. J Evol Biol 13:882–888

    Article  Google Scholar 

  • Kvarnemo C, Mobley KB, Partridge C, Jones AG, Ahnesjö I (2011) Evidence of paternal nutrient provisioning to embryos in broad-nosed pipefish Syngnathus typhle. J Fish Biol 78(6):1725–1737

    Article  PubMed  CAS  Google Scholar 

  • Linton JR, Soloff BR (1964) The physiology of the brood pouch of the male seahorse Hippocampus erectus. Bull Mar Sci Gulf Carib 14:45–61

    Google Scholar 

  • Lourie SA (2003) Measuring seahorses. Tech Rep Ser 4:15p

    Google Scholar 

  • Lourie SA, Randall JE (2003) A new pygmy seahorse, Hippocampus denise (Teleostei: Syngnathidae), from the Indo-Pacific. Zool Stud 42(2):284–291

    Google Scholar 

  • Lourie SA, Vincent ACJ, Hall HJ (1999) Seahorses: an identification guide to the world`s species and their conservation. Project Seahorse, London

    Google Scholar 

  • Mace GM, Harvey PH, Clutton-Brock TH (1983) Vertebrates home-range size and energetic requirements. In: Swingland IR, Greenwood PJ (eds) The ecology of animal movement. Clarendon, Oxford, pp 38–53

    Google Scholar 

  • Masonjones HD (2001) The effect of social context and reproductive status on the metabolic rates of dwarf seahorses (Hippocampus zosterae). Comp Biochem Physiol A 129:541–555

    Article  CAS  Google Scholar 

  • Menegatti JV, Descovi DL, Floeter SR (2003) Interações agonísticas e forrageamento do peixe-donzela Stegastes fuscus (Perciformes: Pomacentridae). Natur Online 1(2):45–50

    Google Scholar 

  • Moreau M, Vincent ACJ (2004) Social structure and space use in a wild population of the Australian short-headed seahorse Hippocampus breviceps Peters, 1869. Mar Freshw Res 55:231–239

    Article  Google Scholar 

  • Partridge C, Shardo J, Boettcher A (2007) Osmoregulatory role of the brood pouch in the euryhaline Gulf pipefish, Syngnathus scovelli. Comp Biochem Physiol A Mol Integr Physiol 147:556–561

    Article  PubMed  Google Scholar 

  • Perante NC, Pajaro MG, Meeuwig JJ, Vincent ACJ (2002) Biology of a seahorse species, Hippocampus comes in the central Philippines. J Fish Biol 60:821–837

    Article  Google Scholar 

  • Pérès JM (1961) Océanographie Biologique et biologie marine. Presses Universtaires de France, Paris

    Google Scholar 

  • Polachek T (1990) Year round closed areas as a management tool. Nat Res Model 4(3):327–354

    Google Scholar 

  • Randall JE (1961) Tagging reef fishes in Virginia Islands. Proc Gulf Carib Fish Inst 14:201–241

    Google Scholar 

  • Ripley JL (2009) Osmoregulatory role of the paternal brood pouch for two Syngnathus species. Comp Biochem Physiol A Mol Integr Physiol 154:98–104

    Article  PubMed  Google Scholar 

  • Ripley JL, Foran CM (2006) Differential parental nutrient allocation in two congeneric pipefish species (Syngnathidae: Syngnathus spp.). J Experim Biol 209:1112–1121

    Article  Google Scholar 

  • Ripley JL, Foran CM (2009) Direct evidence for embryonic uptake of paternally-derived nutrients in two pipefishes (Syngnathidae: Syngnathus spp.). J Comp Physiol B 179:325–333

    Article  PubMed  Google Scholar 

  • Russ GR, Alcala AC (1996) Do marine reserves export adult fish biomass? Evidence from Apo Island, central Philippines. Mar Ecol Prog Ser 132:1–9

    Article  Google Scholar 

  • Sagebakken G, Ahnesjö I, Mobley KB, Goncalves IB, Kvarnemo C (2010) Brooding fathers, not siblings, take up nutrients from embryos. Proc Biol Sci 277:971–977

    Article  PubMed  Google Scholar 

  • Sale PF (1978) Reef fish and other vertebrates: a comparison of social structures. In: Reese ES, Ligher FJ (eds) Contrasts in behavior. Wiley, New York

    Google Scholar 

  • Sale P (1991) The ecology of fishes on coral reefs. Academic, San Diego

    Google Scholar 

  • Samoilys MA, Carlos G (2000) Determining methods of underwater visual census for estimating the abundance of coral reef fishes. Environ Biol Fish 57(3):289–304

    Article  Google Scholar 

  • Schoener TW, Schoener A (1982) Intraspecific variation in home range size in some Anolis lizard. Ecol 63:809–823

    Article  Google Scholar 

  • Strölting KN, Wilson AB (2007) Male pregnancy in seahorses and pipefish: beyond the mammalian model. BioEssays 29:884–896

    Article  Google Scholar 

  • Svensson I (1988) Reproductive costs in two sex-role reversed pipefish species (Syngnathidae). J Anim Ecol 57:929–942

    Article  Google Scholar 

  • Van Wassenbergh S, Roos G, Ferry L (2011) An adaptive explanation for the horse-like shape of seahorses. Nat Commun 2:164

    Article  PubMed  Google Scholar 

  • Vincent ACJ (1990) Reproductive ecology of seahorses. Dissertation, Cambridge University

  • Vincent ACJ (1996) The international trade in seahorses. TRAFFIC International, Cambridge

    Google Scholar 

  • Vincent ACJ, Sadler LM (1995) Faithful pair bonds in wild seahorses, Hippocampus whitei. Anim Behav 50:1557–1569

    Article  Google Scholar 

  • Vincent ACJ, Evans KL, Marsden AD (2005) Home range behaviour of the monogamous Australian seahorse, Hippocampus whitei. Environ Biol Fish 72:1–12

    Article  Google Scholar 

  • Wilson AB, Ahnesjö I, Vincent AC, Meyer A (2003) The dynamics of male brooding, mating patterns, and sex roles in pipefishes and seahorses (family Syngnathidae). Evol 57:1374–1386

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

While writing this paper, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior provided a Ph.D. fellowship to N.V.F.M, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and also FAPERJ provided a research grant to M.A.S.A. (processes 308792/2009-2 and 26/102.868/2008, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Villar Freret-Meurer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freret-Meurer, N.V., Andreata, J.V. & Alves, M.A.S. Activity rate of the seahorse Hippocampus reidi Ginsburg, 1933 (Syngnathidae). acta ethol 15, 221–227 (2012). https://doi.org/10.1007/s10211-012-0125-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10211-012-0125-1

Keywords

Navigation