Skip to main content
Log in

Scrambled Geometric Net Integration Over General Product Spaces

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Quasi-Monte Carlo (QMC) sampling has been developed for integration over \([0,1]^s\) where it has superior accuracy to Monte Carlo (MC) for integrands of bounded variation. Scrambled net quadrature allows replication-based error estimation for QMC with at least the same accuracy and for smooth enough integrands even better accuracy than plain QMC. Integration over triangles, spheres, disks and Cartesian products of such spaces is more difficult for QMC because the induced integrand on a unit cube may fail to have the desired regularity. In this paper, we present a construction of point sets for numerical integration over Cartesian products of s spaces of dimension d, with triangles (\(d=2\)) being of special interest. The point sets are transformations of randomized (tms)-nets using recursive geometric partitions. The resulting integral estimates are unbiased, and their variance is o(1 / n) for any integrand in \(L^2\) of the product space. Under smoothness assumptions on the integrand, our randomized QMC algorithm has variance \(O(n^{-1 - 2/d} (\log n)^{s-1})\), for integration over s-fold Cartesian products of d-dimensional domains, compared to \(O(n^{-1})\) for ordinary MC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Arvo. Stratified sampling of spherical triangles. In Proceedings of the 22nd annual conference on computer graphics and interactive techniques, pp. 437–438. ACM, 1995.

  2. J. Arvo, P. Fajardo, M. Hanrahan, H. W. Jensen, D. Mitchell, M. Pharr, P. Shirley. State of the art in Monte Carlo ray tracing for realistic image synthesis. In ACM Siggraph 2001, New York, 2001. ACM.

  3. Kinjal Basu. Quasi-Monte Carlo tractability of high dimensional integration over products of simplices. Journal of Complexity, 31(6):817–834, 2015.

  4. Kinjal Basu and Art B. Owen. Low discrepancy constructions in the triangle. SIAM Journal on Numerical Analysis, 53(2):743–761, 2015.

  5. B. Beckers and P. Beckers. A general rule for disk and hemisphere partition into equal-area cells. Computational Geometry, 45(2):275–283, 2012.

  6. L. Brandolini, L. Colzani, G. Gigante, and G. Travaglini. A Koksma–Hlawka inequality for simplices. In Trends in Harmonic Analysis, pp. 33–46. Springer, 2013.

  7. R. E. Caflisch, W. Morokoff, and A. B. Owen. Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. Journal of Computational Finance, 1:27–46, 1997.

  8. J. Dick and F. Pillichshammer. Digital sequences, discrepancy and quasi-Monte Carlo integration. Cambridge University Press, Cambridge, 2010.

  9. K. Hesse, Frances Y. Kuo, and I. H. Sloan. A component-by-component approach to efficient numerical integration over products of spheres. Journal of Complexity, 23(1):25–51, 2007.

  10. H. S. Hong, F. J. Hickernell, and G. Wei. The distribution of the discrepancy of scrambled digital (t,m,s)-nets. Mathematics and Computers in Simulation, 62(3-6):335–345, 2003. 3rd IMACS Seminar on Monte Carlo Methods.

  11. A. Keller. Quasi-Monte Carlo image synthesis in a nutshell. In J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, editors, Monte Carlo and Quasi-Monte Carlo Methods 2012, volume 65 of Springer Proceedings in Mathematics & Statistics, pp. 213–249. Springer, Berlin, 2013.

  12. F. Y. Kuo and I. H. Sloan. Quasi-Monte Carlo methods can be efficient for integration over products of spheres. Journal of Complexity, 21(2):196–210, 2005.

  13. P. L’Ecuyer and C. Lemieux. A survey of randomized quasi-Monte Carlo methods. In M. Dror, P. L’Ecuyer, and F. Szidarovszki, editors, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pp. 419–474. Kluwer Academic Publishers, 2002.

  14. W.-L. Loh. On the asymptotic distribution of scrambled net quadrature. Annals of Statistics, 31(4):1282–1324, 2003.

  15. J. Matoušek. Geometric Discrepancy: An Illustrated Guide. Springer, Heidelberg, 1998.

  16. H. Niederreiter. Point sets and sequences with small discrepancy. Monatshefte fur mathematik, 104:273–337, 1987.

  17. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. S.I.A.M., Philadelphia, PA, 1992.

  18. A. B. Owen. Randomly permuted \((t,m,s)\)-sequences. In H. Niederreiter and P. Jau-Shyong Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages 299–317, New York, 1995. Springer-Verlag.

  19. A. B. Owen. Monte Carlo variance of scrambled equidistribution quadrature. SIAM Journal of Numerical Analysis, 34(5):1884–1910, 1997.

  20. A. B. Owen. Scrambled net variance for integrals of smooth functions. Annals of Statistics, 25(4):1541–1562, 1997.

  21. A. B. Owen. Scrambling Sobol’ and Niederreiter-Xing points. Journal of Complexity, 14(4):466–489, December 1998.

  22. A. B. Owen. Variance with alternative scramblings of digital nets. ACM Transactions on Modeling and Computer Simulation, 13(4):363–378, 2003.

  23. A. B. Owen. Multidimensional variation for quasi-Monte Carlo. In J. Fan and G. Li, editors, International Conference on Statistics in honour of Professor Kai-Tai Fang’s 65th birthday, 2005.

  24. A. B. Owen. Quasi-Monte Carlo for integrands with point singularities at unknown locations. In H. Niederreiter and D. Talay, editors, Proceedings of MCQMC 2004, Juan-Les-Pins France, June 2004, Berlin, 2006. Springer-Verlag.

  25. A. B. Owen. Local antithetic sampling with scrambled nets. The Annals of Statistics, 36(5):2319–2343, 2008.

  26. I. M. Sobol’. Calculation of improper integrals using uniformly distributed sequences. Soviet Math Dokl, 14(3):734–738, 1973.

  27. L. Song, A. J. Kimerling, and K. Sahr. Developing an equal area global grid by small circle subdivision. In M. F. Goodchild and A. J. Kimerling, editors, Discrete Global Grids. National Center for Geographic Information & Analysis, Santa Barbara, CA, 2002.

  28. K. R. Stromberg. Probability for analysts. Chapman & Hall, New York, 1994.

  29. J. G. van der Corput. Verteilungsfunktionen I. Nederl. Akad. Wetensch. Proc., 38:813–821, 1935.

  30. J. G. van der Corput. Verteilungsfunktionen II. Nederl. Akad. Wetensch. Proc., 38:1058–1066, 1935.

  31. X. Wang and I. H. Sloan. Quasi-Monte Carlo methods in financial engineering: An equivalence principle and dimension reduction. Operations Research, 59(1):80–95, 2011.

  32. H. Whitney. Analytic extensions of differentiable functions defined in closed sets. Transactions of the American Mathematical Society, 36(1):pp. 63–89, 1934.

Download references

Acknowledgments

This work was supported by the US National Science Foundation grant DMS-1407397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Art B. Owen.

Additional information

Communicated by Ian Sloan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, K., Owen, A.B. Scrambled Geometric Net Integration Over General Product Spaces. Found Comput Math 17, 467–496 (2017). https://doi.org/10.1007/s10208-015-9293-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9293-5

Keywords

Mathematics Subject Classification

Navigation