Skip to main content
Log in

Sampling and Cubature on Sparse Grids Based on a B-spline Quasi-Interpolation

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Let \(X_n = \{x^j\}_{j=1}^n\) be a set of n points in the d-cube \({\mathbb {I}}^d:=[0,1]^d\), and \(\Phi _n = \{\varphi _j\}_{j =1}^n\) a family of n functions on \({\mathbb {I}}^d\). We consider the approximate recovery of functions f on \({{\mathbb {I}}}^d\) from the sampled values \(f(x^1), \ldots , f(x^n)\), by the linear sampling algorithm \( L_n(X_n,\Phi _n,f) := \sum _{j=1}^n f(x^j)\varphi _j. \) The error of sampling recovery is measured in the norm of the space \(L_q({\mathbb {I}}^d)\)-norm or the energy quasi-norm of the isotropic Sobolev space \(W^\gamma _q({\mathbb {I}}^d)\) for \(1 < q < \infty \) and \(\gamma > 0\). Functions f to be recovered are from the unit ball in Besov-type spaces of an anisotropic smoothness, in particular, spaces \(B^{\alpha ,\beta }_{p,\theta }\) of a “hybrid” of mixed smoothness \(\alpha > 0\) and isotropic smoothness \(\beta \in {\mathbb {R}}\), and spaces \(B^a_{p,\theta }\) of a nonuniform mixed smoothness \(a \in {\mathbb {R}}^d_+\). We constructed asymptotically optimal linear sampling algorithms \(L_n(X_n^*,\Phi _n^*,\cdot )\) on special sparse grids \(X_n^*\) and a family \(\Phi _n^*\) of linear combinations of integer or half integer translated dilations of tensor products of B-splines. We computed the asymptotic order of the error of the optimal recovery. This construction is based on B-spline quasi-interpolation representations of functions in \(B^{\alpha ,\beta }_{p,\theta }\) and \(B^a_{p,\theta }\). As consequences, we obtained the asymptotic order of optimal cubature formulas for numerical integration of functions from the unit ball of these Besov-type spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Babenko, On the approximation of periodic functions of several variables by trigonometric polynomials, Dokl. Akad. Nauk USSR  132, 247–250 (1960); English transl. in Soviet Math. Dokl. 1(1960).

  2. R. Bellmann, Dynamic Programming, (Princeton University Press, Princeton, 1957).

    MATH  Google Scholar 

  3. J. Bergh and J.  Löfström, Interpolation Spaces, An Introduction, (Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag, 1976).

  4. O. Bokanowski, J. Garcke, M. Griebel, I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations, J. of Scientific Computing  55, 575–605 (2013).

  5. H.-J. Bungartz, M. Griebel, A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives, J. Complexity  15, 167–199 (1999).

  6. H.-J. Bungartz, M. Griebel, Sparse grids, Acta Numer.  13, 147–269 (2004).

  7. G. Byrenheid, D. Dũng, W. Sickel, T. Ullrich, Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in \(H^{\gamma }\), arXiv:1408.3498 [math.NA] (2014).

  8. C. Chui, An Introduction to Wavelets, (Academic Press, New York, 1992).

    MATH  Google Scholar 

  9. C. de Bore, K. Höllig, S. Riemenschneider, Box Spline, (Springer-Verlag, Berlin, 1993).

    Book  Google Scholar 

  10. R. DeVore, G. Lorentz, Constructive approximation, (Springer-Verlag, New York, 1993).

    Book  MATH  Google Scholar 

  11. D. Dũng (Din’ Zung), The number of integral points in some sets and approximation of functions of several variables, Mat. Zametki  36, 479–491 (1984).

  12. D. Dũng (Din’ Zung), Approximation of functions of several variables on a torus by trigonometric polynomials, Mat. Sb. (N.S.)  131(173)(2), 251–271 (1986).

  13. D. Dũng (Din’ Zung), On recovery and one-sided approximation of periodic functions of several variables, Dokl. Akad. SSSR  313, 787–790 (1990).

  14. D. Dũng, On optimal recovery of multivariate periodic functions, In Harmonic Analysis, ed. by S. Igary, (Springer, Berlin, 1991), pp. 96–105.

  15. D. Dũng, Optimal recovery of functions of a certain mixed smoothness, Vietnam J. Math.  20(2), 18–32 (1992).

  16. D. Dũng, Non-linear sampling recovery based on quasi-interpolant wavelet representations, Adv. Comput. Math.  30, 375–401 (2009).

  17. D. Dũng, Optimal adaptive sampling recovery, Adv. Comput. Math.  34, 1–41 (2011).

  18. D. Dũng, B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness, J. Complexity  27, 541–567 (2011).

  19. D. Dũng, High-dimensional periodic sampling on Smolyak grids based on B-spline quasi-interpolation, arXiv:1502.01447v2 [math.NA] (2015)

  20. D. Dũng, T. Ullrich, \(N\)-dimensions for high-dimensional approximations, Foundations of Comp. Math.  13, 965–1003 (2013).

  21. D. Dũng, T. Ullrich, Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square, Math. Nachr. doi: 10.1002/mana.201400048 (2014).

  22. J. Garcke, M. Hegland, Fitting multidimensional data using gradient penalties and the sparse grid combination technique, Computing  84(1–2), 1–25 (2009).

  23. T. Gerstner, M. Griebel, Numerical Integration using Sparse Grids, Numer. Algorithms  18, 209–232 (1998).

  24. T. Gerstner, M. Griebel, Sparse grids, In Encyclopedia of Quantitative Finance, ed. by R. Cont, (John Wiley and Sons, 2010).

  25. M. Griebel, J. Hamaekers, Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schrödinger equation, Zeitschrift für Physikalische Chemie  224, 527–543 (2010).

  26. M. Griebel, J. Hamaekers, Fast discrete Fourier transform on generalized sparse grids, in Sparse grids and Applications, volume 97 of Lecture Notes in Computational Science and Engineering, (Springer, Berlin, 2014), pp. 75–108.

  27. M. Griebel, H. Harbrecht, A note on the construction of \(L\)-fold sparse tensor product spaces, Constr. Approximation  38(2), 235–251 (2013).

  28. M. Griebel, H. Harbrecht, On the construction of sparse tensor product spaces, Mathematics of Computations  82(282), 975–994 (2013).

  29. M. Griebel, M. Holtz, Dimension-wise integration of high-dimensional functions with applications to finance, J. Complexity  26, 455–489 (2010).

  30. M. Griebel, S. Knapek, Optimized general sparse grid approximation spaces for operator equations, Math. Comp.  78(268), 2223–2257 (2009).

  31. H.-C. Kreusler, H. Yserentant, The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces, Numer. Math.  121, 781–802 (2012).

  32. S. Nikol’skii, Approximation of functions of several variables and embedding theorems, (Springer, Berlin, 1975).

    Book  Google Scholar 

  33. E. Novak, H. Triebel, Function spaces in Lipschitz domains and optimal rates of convergence for sampling, Constr. Approx.  23, 325–350 (2006).

  34. E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume I: Linear Information, EMS Tracts in Mathematics, Vol. 6, (Eur. Math. Soc. Publ. House, Zürich, 2008).

  35. E. Novak and H. Woźniakowski, Tractability of Multivariate Problems, Volume II: Standard Information for Functionals, EMS Tracts in Mathematics, Vol. 12, (Eur. Math. Soc. Publ. House, Zürich, 2010).

  36. W. Sickel, T. Ullrich, The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness, East J. Approx.  13, 387–425 (2007).

  37. W. Sickel, T. Ullrich, Spline Interpolation on sparse grids, Applicable Analysis  90, 337–383 (2011).

  38. S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk  148, 1042–1045 (1963).

  39. S. Telyakovskii, Some estimates for trigonometric series with quasi-convex coefficients, Mat. Sb.  63(105), 426–444 (1964); English transl. in Amer. Math. Soc. Transl. 86 (1970).

  40. V. Temlyakov, Approximation recovery of periodic functions of several variables, Mat. Sb.  128(1985), 256–268.

  41. V. Temlyakov, Approximation of functions with bounded mixed derivative, Trudy MIAN, 178(1986); English transl. in Proc. Steklov Inst. Math. (1989), Issue 1.

  42. V. Temlyakov, On approximate recovery of functions with bounded mixed derivative, J. Complexity  9, 41–59 (1993).

  43. V. Temlyakov, Approximation of periodic functions, (Nova Science Publishers, Inc., New York, 1993).

    MATH  Google Scholar 

  44. H.  Triebel, Interpolation Theory, Function Spaces, Differential Operators, (VEB Deutscher Verlag der Wissenschaften, Berlin, 1978), (Johann Ambrosius Barth, Heidelberg, 1995).

    Google Scholar 

  45. H. Triebel, Bases in function spaces, sampling, discrepancy, numerical integration, (European Math. Soc. Publishing House, Zürich, 2010).

    Book  MATH  Google Scholar 

  46. T. Ullrich, Smolyak’s algorithm, sampling on sparse grids and Sobolev spaces of dominating mixed smoothness. East J. Approx.  14, 1–38 (2008).

  47. T. Ullrich and B. Vedel, Hyperbolic wavelet analysis of classical isotropic and anisotropic Besov-Sobolev spaces, Manuscript (2015).

  48. H. Yserentant, The hyperbolic cross space approximation of electronic wavefunctions, Numer. Math.  105, 659–690 (2007).

  49. H. Yserentant, Regularity and approximability of electronic wave functions, Lecture Notes in Mathematics, 2000, (Springer-Verlag, Berlin, 2010).

  50. H. Yserentant, The mixed regularity of electronic wave functions multiplied by explicit correlation factors, ESAIM Math. Model. Numer. Anal.  45, 803–824 (2011).

  51. C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations ed. by W. Hackbusch, Vol. 31 of Notes on Numerical Fluid Mechanics, (Vieweg, Braunschweig/Wiesbaden, 1991).

Download references

Acknowledgments

This work is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 102.01-2014.02. A part of this work was done when the author was working as a research professor at the Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank the VIASM for providing a fruitful research environment and working condition. The author would like to specially thank Dr. Tino Ullrich and Glenn Byrenheid for their valuable remarks and suggestions. He thanks the referees for constructive remarks, comments and suggestions which certainly improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Dũng.

Additional information

Communicated by Albert Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dũng, D. Sampling and Cubature on Sparse Grids Based on a B-spline Quasi-Interpolation. Found Comput Math 16, 1193–1240 (2016). https://doi.org/10.1007/s10208-015-9274-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9274-8

Keywords

Mathematics Subject Classification

Navigation