Skip to main content
Log in

Castelnuovo–Mumford Regularity and Computing the de Rham Cohomology of Smooth Projective Varieties

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We describe a parallel polynomial time algorithm for computing the topological Betti numbers of a smooth complex projective variety X. It is the first single exponential time algorithm for computing the Betti numbers of a significant class of complex varieties of arbitrary dimension. Our main theoretical result is that the Castelnuovo–Mumford regularity of the sheaf of differential p-forms on X is bounded by p(em+1)D, where e, m, and D are the maximal codimension, dimension, and degree, respectively, of all irreducible components of X. It follows that, for a union V of generic hyperplane sections in X, the algebraic de Rham cohomology of XV is described by differential forms with poles along V of single exponential order. By covering X with sets of this type and using a Čech process, we obtain a similar description of the de Rham cohomology of X, which allows its efficient computation. Furthermore, we give a parallel polynomial time algorithm for testing whether a projective variety is smooth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. D. Arapura, Frobenius amplitude and strong vanishing theorems for vector bundles, Duke Math. J. 121(2), 231–267 (2004). With an appendix by Dennis S. Keeler.

    Article  MathSciNet  MATH  Google Scholar 

  2. M.F. Atiyah, R. Bott, L. Gȧrding, Lacunas for hyperbolic differential operators with constant coefficients. II, Acta Math. 131, 145–206 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Basu, Computing the first few Betti numbers of semi-algebraic sets in single exponential time, J. Symb. Comput. 41(10), 1125–1154 (2006).

    Article  MATH  Google Scholar 

  4. S. Basu, Algorithmic semi-algebraic geometry and topology—recent progress and open problems, in Surveys on Discrete and Computational Geometry. Contemp. Math., vol. 453 (Am. Math. Soc., Providence, 2008), pp. 139–212.

    Chapter  Google Scholar 

  5. D. Bayer, D. Mumford, What can be computed in algebraic geometry, in Computational Algebraic Geometry and Commutative Algebra, Cortona, 1991. Sympos. Math., vol. XXXIV (Cambridge Univ. Press, Cambridge, 1993), pp. 1–48.

    Google Scholar 

  6. D. Bayer, M. Stillman, A criterion for detecting m-regularity, Invent. Math. 87, 1–11 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  7. S.J. Berkowitz, On computing the determinant in small parallel time using a small number of processors, Inf. Process. Lett. 18(3), 147–150 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bertram, L. Ein, R. Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Am. Math. Soc. 4(3), 587–602 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Bourbaki, Elements of Mathematics. Algebra, Part I: Chapters 1–3 (Hermann, Paris, 1974). Translated from the French.

    Google Scholar 

  10. W.D. Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. Math. 126(3), 577–591 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Bürgisser, F. Cucker, Variations by complexity theorists on three themes of Euler, Bézout, Betti, and Poincaré, in Complexity of Computations and Proofs, ed. by J. Krajíček. Quaderni di Matematica [Mathematics Series], vol. 13 (Department of Mathematics, Seconda Università di Napoli, Caserta, 2004), pp. 73–152.

    Google Scholar 

  12. P. Bürgisser, P. Scheiblechner, On the complexity of counting components of algebraic varieties, J. Symb. Comput. 44(9), 1114–1136 (2009).

    Article  MATH  Google Scholar 

  13. P. Bürgisser, P. Scheiblechner, Counting irreducible components of complex algebraic varieties, Comput. Complex. 19(1), 1–35 (2010).

    Article  MATH  Google Scholar 

  14. L. Caniglia, A. Galligo, J. Heintz, Equations for the projective closure and effective Nullstellensatz, Discrete Appl. Math. 33(1–3), 11–23 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Deligne, Équations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, vol. 163 (Springer, Berlin, 1970).

    MATH  Google Scholar 

  16. P. Deligne, A. Dimca, Filtrations de Hodge et par l’ordre du pôle pour les hypersurfaces singulières, Ann. Sci. Ec. Norm. Super. 23(4), 645–656 (1990).

    MathSciNet  MATH  Google Scholar 

  17. A. Dimca, Singularities and Topology of Hypersurfaces. Universitext (Springer, Berlin, 1992).

    Book  MATH  Google Scholar 

  18. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150 (Springer, New York, 1995).

    MATH  Google Scholar 

  19. D. Eisenbud, S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88(1), 89–133 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Eisenbud, D. Grayson, M. Stillman, B. Sturmfels (eds.), Computations in Algebraic Geometry with Macaulay 2. Algorithms and Computations in Mathematics, vol. 8 (Springer, Berlin, 2001).

    Google Scholar 

  21. D. Eisenbud, G. Fløystad, F.-O. Schreyer, Sheaf cohomology and free resolutions over exterior algebras, Trans. Am. Math. Soc. 355(11), 4397–4426 (2003) (electronic).

    Article  MATH  Google Scholar 

  22. N. Fitchas, A. Galligo, Nullstellensatz effectif et conjecture de Serre (théorème de Quillen-Suslin) pour le calcul formel, Math. Nachr. 149, 231–253 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Fitchas, A. Galligo, J. Morgenstern, Precise sequential and parallel complexity bounds for quantifier elimination over algebraically closed fields, J. Pure Appl. Algebra 67, 1–14 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Galligo, Théorème de division et stabilité en géométrie analytique locale, Ann. Inst. Fourier (Grenoble) 29(2), 107–184 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Giaimo, On the Castelnuovo–Mumford regularity of connected curves, Trans. Am. Math. Soc. 358(1), 267–284 (2006) (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Giusti, Some effectivity problems in polynomial ideal theory, in EUROSAM’84: Proceedings of the International Symposium on Symbolic and Algebraic Computation, London, UK (Springer, Berlin, 1984), pp. 159–171.

    Google Scholar 

  27. M. Giusti, J. Heintz, Algorithmes – disons rapides – pour la décomposition d’une variété algébrique en composantes irréductibles et équidimensionnelles, in Effective Methods in Algebraic Geometry (Proceedings of MEGA’90), ed. by T.C. Mora Traverso. Progress in Math., vol. 94 (Birkhäuser, New York, 1991), pp. 169–193.

    Chapter  Google Scholar 

  28. D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

  29. P. Griffiths, J. Harris, Principles of Algebraic Geometry (Wiley, New York, 1978).

    MATH  Google Scholar 

  30. A. Grothendieck, On the de Rham cohomology of algebraic varieties, Publ. Math. IHES 39, 93–103 (1966).

    Google Scholar 

  31. L. Gruson, R. Lazarsfeld, C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72(3), 491–506 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Hartshorne, Algebraic Geometry (Springer, New York, 1977).

    MATH  Google Scholar 

  33. Z. Jelonek, On the effective Nullstellensatz, Invent. Math. 162(1), 1–17 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Kollár, Sharp effective Nullstellensatz, J. Am. Math. Soc. 1(4), 963–975 (1988).

    Article  MATH  Google Scholar 

  35. S. Kwak, Generic projections, the equations defining projective varieties and Castelnuovo regularity, Math. Z. 234(3), 413–434 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Lazard, Resolution des systemes d’equations algebriques, Theor. Comput. Sci. 15, 77–110 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55(2), 423–429 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Lazarsfeld, Positivity in Algebraic Geometry. I. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48 (Springer, Berlin, 2004). Classical setting: line bundles and linear series.

    Book  Google Scholar 

  39. E.W. Mayr, Some complexity results for polynomial ideals, J. Complex. 13(3), 303–325 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  40. E.W. Mayr, A.R. Meyer, The complexity of the word problems for commutative semigroups and polynomial ideals, Adv. Math. 46(3), 305–329 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  41. J. McCleary, A User’s Guide to Spectral Sequences. Mathematics Lecture Series, vol. 12 (Springer, Berlin, 1985).

    Google Scholar 

  42. K. Mulmuley, A fast parallel algorithm to compute the rank of a matrix over an arbitrary field, Combinatorica 7(1), 101–104 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Mumford, Lectures on Curves on an Algebraic Surface. Annals of Mathematics Studies, vol. 59 (Princeton University Press, Princeton, 1966). With a section by G.M. Bergman.

    MATH  Google Scholar 

  44. D. Mumford, Varieties defined by quadratic equations, in Questions on Algebraic Varieties, C.I.M.E., III Ciclo, Varenna, 1969 (Edizioni Cremonese, Rome, 1970), pp. 29–100.

    Google Scholar 

  45. D. Mumford, Algebraic Geometry I: Complex Projective Varieties. Grundlehren der mathematischen Wissenschaften, vol. 221 (Springer, Berlin, 1976).

    MATH  Google Scholar 

  46. T. Oaku, N. Takayama, An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation, J. Pure Appl. Algebra 139, 201–233 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  47. I. Peeva, B. Sturmfels, Syzygies of codimension 2 lattice ideals, Math. Z. 229(1), 163–194 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  48. H.C. Pinkham, A Castelnuovo bound for smooth surfaces, Invent. Math. 83(2), 321–332 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  49. Z. Ran, Local differential geometry and generic projections of threefolds, J. Differ. Geom. 32(1), 131–137 (1990).

    MathSciNet  MATH  Google Scholar 

  50. P. Scheiblechner, On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety, J. Complex. 23(3), 359–379 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Scheiblechner, On a generalization of Stickelberger’s theorem, J. Symb. Comput. 45(12), 1459–1470 (2010). MEGA’2009.

    Article  MathSciNet  MATH  Google Scholar 

  52. P. Scheiblechner, On the complexity of counting irreducible components and computing Betti numbers of complex algebraic varieties. Ph.D. Thesis, 2007.

  53. J.P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6, 1–42 (1955–1956).

    Article  Google Scholar 

  54. G. Smith, Computing global extension modules, J. Symb. Comput. 29, 729–746 (2000).

    Article  MATH  Google Scholar 

  55. J. Stückrad, W. Vogel, Castelnuovo’s regularity and multiplicity, Math. Ann. 281(3), 355–368 (1998).

    Article  Google Scholar 

  56. Á. Szántó, Complexity of the Wu-Ritt decomposition, in PASCO’97: Proceedings of the Second International Symposium on Parallel Symbolic Computation (ACM Press, New York, 1997), pp. 139–149.

    Chapter  Google Scholar 

  57. Á. Szántó, Computation with polynomial systems. Ph.D. Thesis, 1999.

  58. W.V. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 2 (Springer, Berlin, 1998).

    Book  Google Scholar 

  59. C. Voisin, Hodge Theory and Complex Algebraic Geometry. I. Cambridge Studies in Advanced Mathematics, vol. 76 (Cambridge University Press, Cambridge, 2002). Translated from the French original by Leila Schneps.

    Book  MATH  Google Scholar 

  60. J. von zur Gathen, Parallel arithmetic computations: a survey, in MFOCS86. LNCS, vol. 233 (1986), pp. 93–112 SV.

    Google Scholar 

  61. U. Walther, Algorithmic computation of de Rham cohomology of complements of complex affine varieties, J. Symb. Comput. 29(4–5), 795–839 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  62. U. Walther, Algorithmic determination of the rational cohomology of complex varieties via differential forms, in Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, South Hadley, MA, 2000. Contemp. Math., vol. 286 (Am. Math. Soc., Providence, 2001), pp. 185–206.

    Chapter  Google Scholar 

Download references

Acknowledgements

The author is very grateful to Saugata Basu for being his host, for his many important and interesting discussions, and for recommending the book [38]. Without him this work would not have been possible. The author also thanks Manoj Kummini for fruitful discussions about the Castelnuovo–Mumford regularity, Christian Schnell for a discussion on the cohomology of hypersurfaces, Nicolas Perrin and Martí Lahoz for useful discussions about exterior powers of sheaves, and the anonymous referees for valuable comments and suggestions.

Research partially supported by DFG grant SCHE 1639/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Scheiblechner.

Additional information

Communicated by Elizabeth Mansfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheiblechner, P. Castelnuovo–Mumford Regularity and Computing the de Rham Cohomology of Smooth Projective Varieties. Found Comput Math 12, 541–571 (2012). https://doi.org/10.1007/s10208-012-9123-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-012-9123-y

Keywords

Mathematics Subject Classification (2010)

Navigation