, Volume 10, Issue 6, pp 673-693
Date: 22 Jun 2010

Energy-Preserving Integrators and the Structure of B-series

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

B-series are a powerful tool in the analysis of Runge–Kutta numerical integrators and some of their generalizations (“B-series methods”). A general goal is to understand what structure-preservation can be achieved with B-series and to design practical numerical methods that preserve such structures. B-series of Hamiltonian vector fields have a rich algebraic structure that arises naturally in the study of symplectic or energy-preserving B-series methods and is developed in detail here. We study the linear subspaces of energy-preserving and Hamiltonian modified vector fields which admit a B-series, their finite-dimensional truncations, and their annihilators. We characterize the manifolds of B-series that are conjugate to Hamiltonian and conjugate to energy-preserving and describe the relationships of all these spaces.