, Volume 26, Issue 3, pp 347-359
Date: 19 Dec 2007

Magnetic and other non-visual orientation mechanisms in some cave and surface urodeles

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Animals adapted to light-deprived habitats might have improved non-visual sensory systems. Specimens of several cave-dwelling species of urodeles spontaneously and persistently align to natural or artificially-modified permanent magnetic fields. Video observations under dim infrared illumination revealed an obvious individual preference for one particular magnetic direction in every animal tested. Therefore, animals changed alignments predictably when the horizontal magnetic field vector (compass direction) was artificially reversed or deviated. When the vertical vector was compensated, individuals aligned axially. With the vertical vector reversed (inclination upward), either axial alignment was still typical, or the individuals behaved as with the horizontal vector reversed. However, reactions as to the natural field occurred as well. The findings suggest a receptor mechanism that needs both horizontal and vertical magnetic cues, but it is still an open question how and where the physical and physiological mechanisms of magnetic transduction and reception are realized. The visual system is likely not necessary because Proteus is ontogenetically deprived of eyesight, and the other species were blindfolded due to the faint infrared illumination. The results therefore tend to favor those putative receptor mechanisms, assumed to work by means of magnetite nano-elements. In sum, the ability to align within the geomagnetic field may be considered a prerequisite for magnetic orientation and is, among other sensory improvements, judged to be highly relevant as an important sensorial and ecological adaptation to light-deprived habitats.