Skip to main content

Advertisement

Log in

Management of secondary hyperparathyroidism: how and why?

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Secondary hyperparathyroidism (SHPT) is a common complication in chronic kidney disease. Currently, various treatment options are available, including vitamin D receptor activators, cinacalcet hydrochloride, and parathyroidectomy. These treatment options have contributed to the successful control of SHPT, and recent clinical studies have provided evidence suggesting that effective treatment of SHPT leads to improved survival. Although bone disease is the most widely recognized consequence of SHPT and remains a major target for treatment of SHPT, there is increasing evidence that parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), both of which are markedly elevated in SHPT, have multiple adverse effects on extraskeletal tissues. These actions may lead to the pathological development of left ventricular hypertrophy, renal anemia, immune dysfunction, inflammation, wasting, muscle atrophy, and urate accumulation. Given that treatment of SHPT leads to decreases in both PTH and FGF23, these data provide an additional rationale for treating SHPT. However, definitive evidence is still lacking, and future research should focus on whether treatment of SHPT prevents the adverse effects of PTH and FGF23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Komaba H, Kakuta T, Fukagawa M. Diseases of the parathyroid gland in chronic kidney disease. Clin Exp Nephrol. 2011;15:797–809.

    Article  CAS  PubMed  Google Scholar 

  2. Slatopolsky E, Delmez JA. Pathogenesis of secondary hyperparathyroidism. Nephrol Dial Transplant. 1996;11(Suppl 3):130–5.

    Article  CAS  PubMed  Google Scholar 

  3. Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113:561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Komaba H, Fukagawa M. FGF23-parathyroid interaction: implications in chronic kidney disease. Kidney Int. 2010;77:292–8.

    Article  CAS  PubMed  Google Scholar 

  5. Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012;82:737–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117:4003–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Komaba H, Goto S, Fujii H, et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 2010;77:232–8.

    Article  CAS  PubMed  Google Scholar 

  8. Galitzer H, Ben-Dov IZ, Silver J, et al. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int. 2010;77:211–8.

    Article  CAS  PubMed  Google Scholar 

  9. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130.

    Google Scholar 

  10. Guideline Working Group, Japanese Society for Dialysis Therapy. Clinical practice guideline for the management of secondary hyperparathyroidism in chronic dialysis patients. Ther Apher Dial. 2008;12:514–25.

    Article  Google Scholar 

  11. Palmer S, McGregor D, Macaskill P, et al. Meta-analysis. vitamin D compounds in chronic kidney disease. Ann Intern Med. 2007;147:840–53.

    Article  PubMed  Google Scholar 

  12. Okuno S, Ishimura E, Kitatani K, et al. Relationship between parathyroid gland size and responsiveness to maxacalcitol therapy in patients with secondary hyperparathyroidism. Nephrol Dial Transplant. 2003;18:2613–21.

    Article  CAS  PubMed  Google Scholar 

  13. Block GA, Martin KJ, de Francisco AL, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med. 2004;350:1516–25.

    Article  CAS  PubMed  Google Scholar 

  14. Tominaga Y, Numano M, Tanaka Y, et al. Surgical treatment of renal hyperparathyroidism. Semin Surg Oncol. 1997;13:87–96.

    Article  CAS  PubMed  Google Scholar 

  15. Hruska KA, Teitelbaum SL. Renal osteodystrophy. N Engl J Med. 1995;333:166–74.

    Article  CAS  PubMed  Google Scholar 

  16. Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15:2208–18.

    Article  CAS  PubMed  Google Scholar 

  17. Tentori F, Blayney MJ, Albert JM, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2008;52:519–30.

    Article  CAS  PubMed  Google Scholar 

  18. Taniguchi M, Fukagawa M, Fujii N, et al. Serum phosphate and calcium should be primarily and consistently controlled in prevalent hemodialysis patients. Ther Apher Dial. 2013;17:221–8.

    Article  CAS  PubMed  Google Scholar 

  19. Portale AA, Booth BE, Halloran BP, et al. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984;73:1580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ketteler M, Rix M, Fan S, et al. Efficacy and tolerability of sevelamer carbonate in hyperphosphatemic patients who have chronic kidney disease and are not on dialysis. Clin J Am Soc Nephrol. 2008;3:1125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Slatopolsky E, Finch J, Denda M, et al. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest. 1996;97:2534–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Almaden Y, Canalejo A, Hernandez A, et al. Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res. 1996;11:970–6.

    Article  CAS  PubMed  Google Scholar 

  23. Slatopolsky E, Weerts C, Thielan J, et al. Marked suppression of secondary hyperparathyroidism by intravenous administration of 1,25-dihydroxy-cholecalciferol in uremic patients. J Clin Invest. 1984;74:2136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reynolds JL, Joannides AJ, Skepper JN, et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol. 2004;15:2857–67.

    Article  CAS  PubMed  Google Scholar 

  25. Llach F, Yudd M. Paricalcitol in dialysis patients wtih calcitriol-resistant secondary hyperparathyroidism. Am J Kidney Dis. 2001;38(Suppl 5):S45–50.

    Article  CAS  PubMed  Google Scholar 

  26. Akizawa T, Suzuki M, Akiba T, et al. Long-term effect of 1,25-dihydroxy-22-oxavitamin D3 on secondary hyperparathyroidism in haemodialysis patients. One-year administration study. Nephrol Dial Transplant. 2002;17(Suppl 10):28–36.

    Article  CAS  PubMed  Google Scholar 

  27. Fukuda N, Tanaka H, Tominaga Y, et al. Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest. 1993;92:1436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kifor O, Moore FD Jr, Wang P, et al. Reduced immunostaining for the extracellular Ca2þ-sensing receptor in primary and uremic secondary hyperparathyroidism. J Clin Endocrinol Metab. 1996;81:1598–606.

    CAS  PubMed  Google Scholar 

  29. Messa P, Macário F, Yaqoob M, et al. The OPTIMA study: assessing a new cinacalcet (Sensipar/Mimpara) treatment algorithm for secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2008;3:36–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Komaba H, Nakanishi S, Fujimori A, et al. Cinacalcet effectively reduces parathyroid hormone secretion and gland volume regardless of pretreatment gland size in patients with secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2010;5:2305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. St Peter WL, Li Q, Liu J, et al. Cinacalcet use patterns and effect on laboratory values and other medications in a large dialysis organization, 2004 through 2006. Clin J Am Soc Nephrol. 2009;4:354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vervloet M, Bencova V, Malberti F, et al. “Real-World” use of cinacalcet for managing SHPT in different European countries: analysis of data from the ECHO observational study. Clin Nephrol. 2010;74:198–208.

    Article  CAS  PubMed  Google Scholar 

  33. Tominaga Y, Kakuta T, Yasunaga C, et al. Evaluation of parathyroidectomy for secondary and tertiary hyperparathyroidism by the Parathyroid Surgeons’ Society of Japan. Ther Apher Dial. 2016;20:6–11.

    Article  PubMed  Google Scholar 

  34. Tentori F, Wang M, Bieber BA, et al. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: the DOPPS study. Clin J Am Soc Nephrol. 2015;10:98–109.

    Article  CAS  PubMed  Google Scholar 

  35. Martin KJ, Pickthorn K, Huang S, et al. AMG 416 (velcalcetide) is a novel peptide for the treatment of secondary hyperparathyroidism in a single-dose study in hemodialysis patients. Kidney Int. 2014;85:191–7.

    Article  CAS  PubMed  Google Scholar 

  36. Fukagawa M, Yokoyama K, Shigematsu T, et al. A phase 3, multicentre, randomised, double-blind, placebocontrolled, parallel-group study to evaluate the efficacy and safety of etelcalcetide (ONO-5163/AMG 416), a novel intravenous calcimimetic, for secondary hyperparathyroidism in Japanese haemodialysis patients. Nephrol Dial Transplant. (in press).

  37. Kitaoka M, Fukagawa M, Ogata E, et al. Reduction of functioning parathyroid cell mass by ethanol injection in chronic dialysis patients. Kidney Int. 1994;46:1110–7.

    Article  CAS  PubMed  Google Scholar 

  38. Shiizaki K, Hatamura I, Negi S, et al. Percutaneous maxacalcitol injection therapy regresses hyperplasia of parathyroid and induces apoptosis in uremia. Kidney Int. 2003;64:992–1003.

    Article  CAS  PubMed  Google Scholar 

  39. Yajima A, Tanaka K, Tominaga Y, et al. Early changes of bone histology and circulating markers of bone turnover after parathyroidectomy in hemodialysis patients with severe hyperparathyroidism. Clin Nephrol. 2001;56:27–34.

    CAS  PubMed  Google Scholar 

  40. Tominaga Y, Katayama A, Sato T, et al. Re-operation is frequently required when parathyroid glands remain after initial parathyroidectomy for advanced secondary hyperparathyroidism in uraemic patients. Nephrol Dial Transplant. 2003;18(Suppl 3):iii65–70.

    PubMed  Google Scholar 

  41. Jadoul M, Albert JM, Akiba T, et al. Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int. 2006;70:1358–66.

    Article  CAS  PubMed  Google Scholar 

  42. Abdelhadi M, Nordenström J. Bone mineral recovery after parathyroidectomy in patients with primary and renal hyperparathyroidism. J Clin Endocrinol Metab. 1998;83:3845–51.

    Article  CAS  PubMed  Google Scholar 

  43. Rudser KD, de Boer IH, Dooley A, et al. Fracture risk after parathyroidectomy among chronic hemodialysis patients. J Am Soc Nephrol. 2007;18:2401–7.

    Article  PubMed  Google Scholar 

  44. Behets GJ, Spasovski G, Sterling LR, et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. 2015;87:846–56.

    Article  CAS  PubMed  Google Scholar 

  45. Moe SM, Abdalla S, Chertow GM, et al. Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial. J Am Soc Nephrol. 2015;26:1466–75.

    Article  CAS  PubMed  Google Scholar 

  46. Salusky IB, Kuizon BD, Belin TR, et al. Intermittent calcitriol therapy in secondary hyperparathyroidism: a comparison between oral and intraperitoneal administration. Kidney Int. 1998;54:907–14.

    Article  CAS  PubMed  Google Scholar 

  47. Komaba H, Taniguchi M, Wada A, et al. Parathyroidectomy and survival among Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int. 2015;88:350–9.

    Article  PubMed  Google Scholar 

  48. Kestenbaum B, Andress DL, Schwartz SM, et al. Survival following parathyroidectomy among US dialysis patients. Kidney Int. 2004;66:2010–6.

    Article  PubMed  Google Scholar 

  49. Costa-Hong V, Jorgetti V, Gowdak LH, et al. Parathyroidectomy reduces cardiovascular events and mortality in renal hyperparathyroidism. Surgery. 2007;142:699–703.

    Article  PubMed  Google Scholar 

  50. Ivarsson KM, Akaberi S, Isaksson E, et al. The effect of parathyroidectomy on patient survival in secondary hyperparathyroidism. Nephrol Dial Transplant. 2015;30:2027–33.

    Article  PubMed  PubMed Central  Google Scholar 

  51. EVOLVE Trial Investigators. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367:2482–94.

    Article  Google Scholar 

  52. Tentori F, McCullough K, Kilpatrick RD, Bradbury BD, Robinson BM, Kerr PG, Pisoni RL. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014;85:166–73.

    Article  PubMed  Google Scholar 

  53. Komaba H, Fukagawa M. Phosphate-a poison for humans? Kidney Int. 2016;90:753–63.

    Article  CAS  PubMed  Google Scholar 

  54. Streja E, Lau WL, Goldstein L, et al. Hyperphosphatemia is a combined function of high serum PTH and high dietary protein intake in dialysis patients. Kidney Int Suppl. 2013;3:462–8.

    Article  CAS  Google Scholar 

  55. Cuppari L, de Carvalho AB, Avesani CM, et al. Increased resting energy expenditure in hemodialysis patients with severe hyperparathyroidism. J Am Soc Nephrol. 2004;15:2933–9.

    Article  PubMed  Google Scholar 

  56. Chou FF, Lee CH, Chen JB. General weakness as an indication for parathyroid surgery in patients with secondary hyperparathyroidism. Arch Surg. 1999;134:1108–11.

    Article  CAS  PubMed  Google Scholar 

  57. Kir S, Komaba H, Garcia AP, et al. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 2016;23:315–23.

    Article  CAS  PubMed  Google Scholar 

  58. Kir S, White JP, Kleiner S, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014;513:100–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brancaccio D, Cozzolino M, Gallieni M. Hyperparathyroidism and anemia in uremic subjects: a combined therapeutic approach. J Am Soc Nephrol. 2004;15(Suppl 1):S21–4.

    Article  PubMed  Google Scholar 

  60. Trunzo JA, McHenry CR, Schulak JA, et al. Effect of parathyroidectomy on anemia and erythropoietin dosing in end-stage renal disease patients with hyperparathyroidism. Surgery. 2008;144:915–9.

    Article  PubMed  Google Scholar 

  61. Tanaka M, Yoshida K, Fukuma S, et al. Effects of secondary hyperparathyroidism treatment on improvement in anemia: results from the MBD-5D study. PLoS One. 2016;11:e0164865.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Geara AS, Castellanos MR, Bassil C, et al. Effects of parathyroid hormone on immune function. Clin Dev Immunol. 2010;2010:418695.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tzanno-Martins C, Futata E, Jorgetti V, et al. Restoration of impaired T-cell proliferation after parathyroidectomy in hemodialysis patients. Nephron. 2000;84:224–7.

    Article  CAS  PubMed  Google Scholar 

  64. Schlüter KD, Piper HM. Cardiovascular actions of parathyroid hormone and parathyroid hormone-related peptide. Cardiovasc Res. 1998;37:34–41.

    Article  PubMed  Google Scholar 

  65. Custódio MR, Koike MK, Neves KR, et al. Parathyroid hormone and phosphorus overload in uremia: impact on cardiovascular system. Nephrol Dial Transplant. 2012;27:1437–45.

    Article  PubMed  Google Scholar 

  66. Drüeke T, Fauchet M, Fleury J, et al. Effect of parathyroidectomy on left-ventricular function in haemodialysis patients. Lancet. 1980;1:112–4.

    Article  PubMed  Google Scholar 

  67. Sugimoto R, Watanabe H, Ikegami K, et al. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism. Kidney Int. (in press).

  68. Latif W, Karaboyas A, Tong L, et al. Uric acid levels and all-cause and cardiovascular mortality in the hemodialysis population. Clin J Am Soc Nephrol. 2011;6:2470–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Odden MC, Amadu AR, Smit E, et al. Uric acid levels, kidney function, and cardiovascular mortality in US adults: National Health and Nutrition Examination Survey (NHANES) 1988–1994 and 1999–2002. Am J Kidney Dis. 2014;64:550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Komaba H, Fukagawa M. The role of FGF23 in CKD—with or without Klotho. Nat Rev Nephrol. 2012;8:484–90.

    Article  CAS  PubMed  Google Scholar 

  71. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121:4393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Coe LM, Madathil SV, Casu C, et al. FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis. J Biol Chem. 2014;289:9795–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rossaint J, Oehmichen J, Van Aken H, et al. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest. 2016;126:962–74.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Singh S, Grabner A, Yanucil C, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016;90:985–96.

    Article  CAS  PubMed  Google Scholar 

  75. Lavi-Moshayoff V, Wasserman G, Meir T, et al. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010;299:F882–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This supplement is supported by the Grants from the Japanese Society for Kidney Bone Disease (JSKBD) and from the Research Meeting on Kidney and Metabolic Bone Disease. The authors thank the following investigators who participated in the historical cohort study of maintenance hemodialysis patients: Dr. Miho Hida, Dr. Takao Suga, Dr. Reika Tanaka, Dr. Kayoko Watanabe, Dr. Nobuyoshi Takagi, Dr. Hiroshi Kida, Dr. Mitsumine Fukui, Dr. Tateki Kitaoka, Dr. Tetsuo Shirai, Dr. Mikako Nagaoka, Dr. Tsuneyoshi Oh, Dr. Eiji Nakano, Dr. Takayuki Hashiguchi, Dr. Hirofumi Ishii, Dr. Koichi Shimizu, Dr. Yasuji Sugano, Dr. Toru Furuya, Dr. Naoto Ishida, Dr. Hiroyuki Ogura, Dr. Hiroaki Nakada, Dr. Miho Enomoto, and Dr. Tetsuya Kashiwagi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Komaba.

Ethics declarations

Conflict of interest

H.K. has received honoraria, consulting fees, and/or Grant/research support from Bayer Yakuhin, Chugai Pharmaceutical, and Kyowa Hakko Kirin. T.K. has received honoraria from Chugai Pharmaceutical and Kyowa Hakko Kirin. M.F. has received honoraria, consulting fees, and/or Grant/research support from Bayer Yakuhin, Kyowa Hakko Kirin, and Torii Pharmaceutical.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komaba, H., Kakuta, T. & Fukagawa, M. Management of secondary hyperparathyroidism: how and why?. Clin Exp Nephrol 21 (Suppl 1), 37–45 (2017). https://doi.org/10.1007/s10157-016-1369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-016-1369-2

Keywords

Navigation