Skip to main content
Log in

High-throughput DNA barcoding for ecological network studies

  • Special Feature: Review
  • Unravelling ecological networks
  • Published:
Population Ecology

Abstract

The network theoretical framework of ecological community studies is expected to promote not only the basic understanding of ecological and coevolutionary dynamics but also the application of those scientific insights into ecosystem management. However, our knowledge of ecological network architecture in the wild largely stems from empirical studies on macro-organismal systems such as those of plant–pollinator, plant–seed disperser, and prey–predator interactions. In this sense, we have remained ignorant of the diversity of ecological network architecture, its underlying assembly processes, and its consequences on ecological and coevolutionary dynamics. In this paper, I discuss how the high-throughput DNA barcoding of microbes, especially that based on next-generation sequencing, potentially expands the target of ecological network studies. I review the methodological platforms of next-generation sequencing-based analyses of microbe–host animal/plant networks and then introduce some case studies on the networks of plants and their hyper-diverse fungal symbionts. As those preliminary studies are uncovering the unexpected diversity of ecological network architecture, further application of such next-generation sequencing-based analyses to a diverse array of microbial systems will significantly improve our views on community ecological and coevolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Hoiland K, Kjoller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vralstad T, Liimatainen K, Peintner U, Koljalg U (2010) The UNITE database for molecular identification of fungi: recent updates and future perspectives. New Phytol 186:281–285

    PubMed  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483:205–208

    CAS  PubMed  Google Scholar 

  • Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for measuring nestedness using quantitative matrices. Env Model Softw 26:173–178

    Google Scholar 

  • Almeida-Neto M, Guimarães PR Jr, Lewinsohn TM (2007) On nestedness analyses: rethinking matrix temperature and anti-nestedness. Oikos 116:716–722

    Google Scholar 

  • Almeida-Neto M, Guimarães P, Guimarães PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239

    Google Scholar 

  • Bahram M, Harend H, Tedersoo L (2013) Network perspectives of ectomycorrhizal associations. Fungal Ecol 7:70–77

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    PubMed Central  PubMed  Google Scholar 

  • Ball SL, Armstrong KF (2008) Rapid, one-step DNA extraction for insect pest identification by using DNA barcodes. J Econom Entomol 101:523–532

    CAS  Google Scholar 

  • Barber MJ (2007) Modularity and community detection in bipartite networks. Phys Rev E 76:066102

    Google Scholar 

  • Bascompte J, Jordano P (2014) Mutualistic networks. Princeton University Press, Princeton

    Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bastolla U, Fortuna MA, Pascual-Garía A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020

    CAS  PubMed  Google Scholar 

  • Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM (2009) Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185:543–553

    PubMed  Google Scholar 

  • Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189

    PubMed Central  PubMed  Google Scholar 

  • Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473

    Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9

    PubMed Central  PubMed  Google Scholar 

  • Blüthgen N, Menzel F, Hovestadt T, Fiala B (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Curr Biol 17:341–346

    PubMed  Google Scholar 

  • Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367

    PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caruso T, Rillig MC, Garlaschelli D (2012) On the application of network theory to arbuscular mycorrhizal fungi–plant interactions: the importance of basic assumptions. New Phytol 194:891–894

    PubMed  Google Scholar 

  • CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797

    PubMed Central  Google Scholar 

  • Chagnon P, Bradley R, Klironomos J (2014) Plant–fungal symbioses as ecological networks: the need to characterize more than just interaction patterns. Fungal Ecol. doi:10.1016/j.funeco.2014.05.002

    Google Scholar 

  • Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613

    PubMed Central  PubMed  Google Scholar 

  • China Plant BOL Group (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA 108:19641–19646

    PubMed Central  Google Scholar 

  • Clauset A, Moore C, Newman ME (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453:98–101

    CAS  PubMed  Google Scholar 

  • Coleman AW (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genetics 19:370–375

    CAS  Google Scholar 

  • Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336:1255–1262

    PubMed Central  CAS  PubMed  Google Scholar 

  • Darwin C (1862) On the various contrivances by which British and foreign orchids are fertilized by insects. Murray, London

    Google Scholar 

  • de Cárcer DA, Denman SE, McSweeney C, Morrison M (2011) Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl Env Microbiol 77:8795–8798

    Google Scholar 

  • Donatti CI, Guimarães PR Jr, Galetti M, Pizo MA, Marquitti F, Dirzo R (2011) Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773–781

    PubMed  Google Scholar 

  • Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24

    Google Scholar 

  • Frey KG, Herrera-Galeano JE, Redden CL, Luu TV, Servetas SL, Mateczun AJ, Mokashi VP, Bishop-Lilly KA (2014) Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood. BMC Genom 15:96

    Google Scholar 

  • Fukami T, Nakajima M (2013) Complex plant–soil interactions enhance plant species diversity by delaying community convergence. J Ecol 101:316–324

    Google Scholar 

  • Fukatsu T, Tsuchida T, Nikoh N, Koga R (2001) Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl Env Microbiol 67:1284–1291

    CAS  Google Scholar 

  • Guimarães PR Jr, Raimundo RLG, Cagnolo L, Melián CJ, Vázquez DP, Goldberg J, Naik R (2012) Interaction Web DataBase. http://www.nceas.ucsb.edu/interactionweb/index.html

  • Guimarães PR Jr, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885

    PubMed  Google Scholar 

  • Guimerà R, Amaral LAN (2005) Cartography of complex networks: modules and universal roles. J Stat Mech Theor Exper 2005:P02001

    Google Scholar 

  • Hajibabaei M, Singer GA, Hebert PD, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genetics 23:167–172

    CAS  Google Scholar 

  • Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hebert PD, Cywinska A, Ball SL, de Waard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc B Lond 270:313–321

    CAS  Google Scholar 

  • Hebert PD, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B Lond 270:S96–S99

    CAS  Google Scholar 

  • Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:38–47

    Google Scholar 

  • Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T (2006) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516

    CAS  PubMed  Google Scholar 

  • Human Microbiome Project Consortium (2012a) A framework for human microbiome research. Nature 486:215–221

    Google Scholar 

  • Human Microbiome Project Consortium (2012b) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Google Scholar 

  • Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–145

    Google Scholar 

  • Joly S, Davies TJ, Archambault A, Bruneau A, Derry A, Kembel SW, Peres-Neto P, Vamosi J, Wheeler TA (2014) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Res 14:221–232

    CAS  Google Scholar 

  • Kadowaki K, Sato H, Yamamoto S, Tanabe AS, Hidaka A, Toju H (2014) Detection of the horizontal spatial structure of soil fungal communities in a natural forest. Popul Ecol 56:301–310

    Google Scholar 

  • Kato M, Kakutani T, Inoue T, Itino T (1990) Insect–flower relationship in the primary beech forest of Ashu, Kyoto: an overview of the flowering phenology and the seasonal pattern of insect visits. Contr Biol Lab Kyoto Univ 27:309–376

    Google Scholar 

  • Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Ann Rev Ecol Evol Syst 39:215–236

    Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81

    CAS  PubMed  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmaer MT, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    CAS  PubMed  Google Scholar 

  • Kikuchi Y (2008) Endosymbiotic bacteria in insects: their diversity and culturability. Microb Env 24:195–204

    Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    CAS  PubMed  Google Scholar 

  • Kondoh M (2008) Building trophic modules into a persistent food web. Proc Natl Acad Sci USA 105:16631–16635

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836

    PubMed  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J (2013) Fungal community analysis by high-throughput sequencing of amplified markers: a user’s guide. New Phytol 199:288–299

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotech 201:251364. doi:10.1155/2012/251364

    Google Scholar 

  • Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD (2010) Negative plant–soil feedback predicts tree–species relative abundance in a tropical forest. Nature 466:752–755

    CAS  PubMed  Google Scholar 

  • Mardis ER (2013) Next-generation sequencing platforms. Ann Rev Analyt Chem 6:287–303

    CAS  Google Scholar 

  • Marquitti FMD, Guimarães PR Jr, Pires MM, Bittencourt LF (2013) MODULAR: Software for the autonomous computation of modularity in large network sets. Ecography 37:221–224

    Google Scholar 

  • May RM (1972) Will a large complex system be stable? Nature 238:413–414

    CAS  PubMed  Google Scholar 

  • May RM (2006) Network structure and the biology of populations. Trends Ecol Evol 21:394–399

    PubMed  Google Scholar 

  • Minamoto T, Yamanaka H, Takahara T, Honjo MN, Kawabata ZI (2012) Surveillance of fish species composition using environmental DNA. Limnology 13:193–197

    CAS  Google Scholar 

  • Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M (2012) The network structure of plant-arbuscular mycorrhizal fungi. New Phytol 194:536–547

    CAS  PubMed  Google Scholar 

  • Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA 104:8627–8633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science 337:349–351

    CAS  PubMed  Google Scholar 

  • Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    CAS  Google Scholar 

  • Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008) Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinfo 4:193–201

    Google Scholar 

  • Nilsson HR, Tedersoo L, Lindahl BD, Kjøller R, Carlsen T, Quince C, Abarenkov K, Pennanen T, Stenlid J, Bruns T (2011) Towards standardization of the description and publication of next-generation sequencing datasets of fungal communities. New Phytol 191:314–318

    Google Scholar 

  • Oksanen J, Blanachet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package. R package version 2.0-3. http://cran.r-project.org/web/packages/vegan/index.html

  • Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Ann Rev Microbiol 40:337–365

    CAS  Google Scholar 

  • Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Cepicka I, Decelle J, Dunthorn M (2012) CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol 10:e1001419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peay KG, Kennedy PG, Bruns TD (2008) Fungal community ecology: a hybrid beast with a molecular master. Bioscience 58:799–810

    Google Scholar 

  • Pimm SL (1991) The balance of nature? Ecological issues in the conservation of species and communities. University of Chicago Press, Chicago

    Google Scholar 

  • Poisot T, Péquin B, Gravel D (2013) High-throughput sequencing: a roadmap toward community ecology. Ecol Evol 3:1125–1139

    PubMed Central  PubMed  Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Ann Rev Ecol Syst 20:297–330

    Google Scholar 

  • Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950

    CAS  PubMed  Google Scholar 

  • Prosser JI, Bohannan BJ, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392

    CAS  PubMed  Google Scholar 

  • Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847

    Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Ann Rev Microbiol 57:369–394

    Google Scholar 

  • Rezende EL, Lavabre JE, Guimarães PR Jr, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928

    CAS  PubMed  Google Scholar 

  • Ratnasingham S, Hebert PD (2007) BOLD: The barcode of life data system (http://www.barcodinglife.org). Mol Ecol Notes 7:355–364

  • Robertson C (1928) Flowers and insects lists of visitors of four hundred and fifty three flowers. The Science Press, Lancaster

    Google Scholar 

  • Rohr RP, Saavedra S, Bascompte J (2014) On the structural stability of mutualistic systems. Science 345(6195):1253497. doi:10.1126/science.1253497

    PubMed  Google Scholar 

  • Schleuning M, Ingmann L, Strauß R, Fritz SA, Dalsgaard B, Matthias Dehling D, Plein M, Saavedra F, Sandel B, Svenning JC (2014) Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol Lett 17:454–463

    PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Env Microbiol 75:7537–7541

    CAS  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Res 9:83–89

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York

    Google Scholar 

  • Sommer DD, Delcher AL, Salzberg SL, Pop M (2007) Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 8:64

    PubMed Central  PubMed  Google Scholar 

  • Staniczenko PP, Kopp JC, Allesina S (2013) The ghost of nestedness in ecological networks. Nat Commun 4:1391

    PubMed  Google Scholar 

  • Sullivan DJ, Völkl W (1999) Hyperparasitism: multitrophic ecology and behavior. Ann Rev Entomol 44:291–315

    CAS  Google Scholar 

  • Suweis S, Simini F, Banavar JR, Maritan A (2013) Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500:449–452

    CAS  PubMed  Google Scholar 

  • Tanabe AS (2012) Assams, a software distributed by the author at http://www.fifthdimension.jp/

  • Tanabe AS, Toju H (2013) Two new computational methods for universal DNA barcoding: A benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants. PLoS One 8:e76910

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301

    CAS  PubMed  Google Scholar 

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    PubMed  Google Scholar 

  • Thomas T, Gilbert J, Meyer F (2012) Metagenomics-a guide from sampling to data analysis. Microb Inform Exp 2:3

    PubMed Central  PubMed  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN (2006) Mutualistic webs of species. Science 312:372–373

    CAS  PubMed  Google Scholar 

  • Toju H, Fukatsu T (2011) Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol 20:853–868

    PubMed  Google Scholar 

  • Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7:e40863

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toju H, Yamamoto S, Sato H, Tanabe AS, Gilbert GS, Kadowaki K (2013a) Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi. Ecol Evol 3:1281–1293

    PubMed Central  PubMed  Google Scholar 

  • Toju H, Sato H, Yamamoto S, Kadowaki K, Tanabe AS, Yazawa S, Nishimura O, Agata K (2013b) How are plant and fungal communities linked to each other in belowground ecosystems? A massively parallel pyrosequencing analysis of the association specificity of root-associated fungi and their host plants. Ecol Evol 3:3112–3124

    PubMed Central  PubMed  Google Scholar 

  • Toju H, Yamamoto S, Sato H, Tanabe AS (2013c) Sharing of diverse mycorrhizal and root-endophytic fungi among plant species in an oak-dominated cool–temperate forest. PLoS ONE 8:e78248

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toju H, Sato H, Tanabe AS (2014a) Diversity and spatial structure of belowground plant–fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants. PLoS One 9:e86566

    PubMed Central  PubMed  Google Scholar 

  • Toju H, Guimarães PR Jr, Olesen JM, Thompson JN (2014b) Assembly of complex plant–fungus networks. Nature Commun 5:5273

    CAS  Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    CAS  PubMed  Google Scholar 

  • Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202–205

    CAS  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    PubMed  Google Scholar 

  • Tylianakis JM, Lalibert E, Nielsen A, Bascompte J (2009) Conservation of species interaction networks. Biol Cons 143:2270–2279

    Google Scholar 

  • Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117

    PubMed  Google Scholar 

  • van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276

    Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    CAS  PubMed  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Wirta HK, Hebert PD, Kaartinen R, Prosser SW, Várkonyi G, Roslin T (2014) Complementary molecular information changes our perception of food web structure. Proc Natl Acad Sci USA 111:1885–1890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto S, Sato H, Tanabe AS, Hidaka A, Kadowaki K, Toju H (2014) Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercus species. PLoS One 9:e96363

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Akifumi S. Tanabe for his advice on bioinformatic pipelines and three anonymous reviewers for their constructive comments on the manuscript. This study was supported by the Funding Program for Next Generation World-Leading Researchers of Cabinet Office, the Japanese Government (GS014) and JSPS KAKENHI (No. 26711026).

Conflict of interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Toju.

Additional information

This manuscript was submitted for the special feature based on a symposium in Osaka, Japan, held on 12 October 2013.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toju, H. High-throughput DNA barcoding for ecological network studies. Popul Ecol 57, 37–51 (2015). https://doi.org/10.1007/s10144-014-0472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-014-0472-z

Keywords

Navigation