Skip to main content
Log in

Robustness of Taylor’s law under spatial hierarchical groupings of forest tree samples

  • Original article
  • Published:
Population Ecology

Abstract

Testing how well Taylor’s law (TL) describes spatial variation of the population density of a species requires grouping sampling areas (patches of habitat) into blocks so that a mean and a variance of the population density can be calculated over the patches in each block. The relationship between specific groupings and TL remains largely unknown. Here, using tree counts from a deciduous forest, we studied the effect of four biological methods of grouping sampling areas into blocks on the form and parameters of TL. Regardless of the method of grouping, the species-specific basal area densities obeyed TL, and the estimated slopes were not significantly different from one grouping method to another. Surprisingly, TL remained valid when four kinds of randomizations were performed to the biological groupings and tree census. These randomizations randomly assigned sampling areas to blocks, and/or randomized the species composition within or across sampling areas. We found that the form of TL was robust to different grouping methods and species randomizations, but its parameter values depended significantly on species compositions at sampling areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arruda-Neto JDT, Bittencourt-Oliveira MC, Castro AC, Rodrigues TE, Harari J, Mesa J, Genofre GC (2012) Global warming and the power-laws of ecology. Atmos Clim Sci 2:8–13

    Google Scholar 

  • Avery ET, Burkhart EH (2002) Forest measurements, 5th edn. McGraw-Hill, NY

    Google Scholar 

  • Azevedo RBR, Leroi AM (2001) A power law for cells. Proc Natl Acad Sci USA 98:5699–5704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bitterlich W (1984) The relascope idea: relative measurements in forestry. Commonwealth Agricultural Bureaux, Wallingford

    Google Scholar 

  • Cohen JE (2013) Stochastic population dynamics in a Markovian environment implies Taylor’s power law of fluctuation scaling. Theor Popul Biol 93:30–37

    Article  Google Scholar 

  • Cohen JE, Xu M, Schuster WSF (2012) Allometric scaling of population variance with mean body size is predicted from Taylor’s law and density-mass allometry. Proc Natl Acad Sci USA 109:15829–15834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen JE, Xu M, Schuster WSF (2013a) Stochastic multiplicative population growth predicts and interprets Taylor’s power law of fluctuation scaling. Proc R Soc B-Biol Sci 280:20122955

    Article  Google Scholar 

  • Cohen JE, Xu M, Brunborg H (2013b) Taylor’s law applies to spatial variation in a human population. Genus 69(1):25–60

    Google Scholar 

  • Dalin P, Kindvall O, Björkman C (2009) Reduced population control of an insect pest in managed willow monocultures. PLoS One 4(5):e5487

    Article  PubMed Central  PubMed  Google Scholar 

  • Green DM (2003) The ecology of extinction: population fluctuation and decline in amphibians. Biol Conserv 111:331–343

    Article  Google Scholar 

  • Gregoire TG, Valentine HT (2004) Sampling strategies for natural resources and the environment. Chapman and Hall/CRC, London

    Google Scholar 

  • Hanski I (1980) Spatial patterns and movements in coprophagous beetles. Oikos 34:293–310

    Article  Google Scholar 

  • Hanski I (1982) On patterns of temporal and spatial variation in animal populations. Ann Zool Fenn 19:21–37

    Google Scholar 

  • Hanski I (1987) Cross-correlation in population dynamics and the slope of spatial variance-mean regressions. Oikos 50:148–151

    Article  Google Scholar 

  • Isham V (1991) Assessing the variability of stochastic epidemics. Math Biosci 107(2):209–224

    Article  CAS  PubMed  Google Scholar 

  • James A, Plank MJ (2007) unpublished paper, available at http://arxiv.org/pdf/0712.0613.pdf

  • Jiang J, DeAngelis DL, Zhang B, Cohen JE (2014) Population age and initial density in a patchy environment affect the occurrence of abrupt transitions in a birth-and-death model of Taylor’s law. Ecol Model 289:59–65

    Article  Google Scholar 

  • Jørgensen B (1987) Exponential dispersion models. J Roy Stat Soc B 49:127–162

    Google Scholar 

  • Jørgensen B (1997) The theory of dispersion models. Chapman and Hall/CRC, London

    Google Scholar 

  • Jørgensen B, Martínez JR, Vinogradov V (2009) Domains of attraction to Tweedie distributions. Lith Math J 49:399–425

    Article  Google Scholar 

  • Kaltz O, Escobar-Páramo P, Hochberg ME, Cohen JE (2012) Bacterial microcosms obey Taylor’s law: effects of abiotic and biotic stress and genetics on mean and variance of population density. Ecol Process 1:5

    Article  Google Scholar 

  • Keeling MJ, Grenfell BT (1999) Stochastic dynamics and a power law for measles variability. Philos Trans R Soc B-Biol Sci 354:769–776

    Article  CAS  Google Scholar 

  • Kendal WS (2002) A frequency distribution for the number of hematogenous organ metastases. J Theor Biol 217:203–218

    Article  PubMed  Google Scholar 

  • Kendal WS (2004a) A scale invariant clustering of genes on human chromosome 7. BMC Evol Biol 4:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Kendal WS (2004b) Taylor’s ecological power law as a consequence of scale invariant exponential dispersion models. Ecol Complex 1:193–209

    Article  Google Scholar 

  • Kendal WS, Jørgensen B (2011) Taylor’s power law and fluctuation scaling explained by a central-limit-like convergence. Phys Rev E 83:066115

    Article  Google Scholar 

  • Kilpatrick AM, Ives AR (2003) Species interactions can explain Taylor’s power law for ecological time series. Nature 422:65–68

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Yang B, Lin D, Kerkhoff AJ, Ma K (2013) The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression? PLoS One 8(10):e77007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Legendre S, Schoener TW, Clobert J, Spiller DA (2008) How is extinction risk related to population-size variability over time? A family of models for species with repeated extinction and immigration. Am Nat 172:282–298

    Article  PubMed  Google Scholar 

  • MathWorks Inc (2012) MATLAB R2012a. Natick, MA

    Google Scholar 

  • McArdle BH (1988) The structural relationship: regression in biology. Can J Zool 66(11):2329–2339

    Article  Google Scholar 

  • McArdle BH, Gaston KJ, Lawton JH (1990) Variation in the size of animal populations: patterns, problems and artefacts. J Anim Ecol 59(2):439–454

    Article  Google Scholar 

  • McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) The route to extinction: population dynamics of a threatened butterfly. Oecologia 132:538–548

    Article  Google Scholar 

  • Packard GC, Birchard GF (2008) Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. J Exp Biol 211:3581–3587

    Article  PubMed  Google Scholar 

  • Packard GC, Birchard GF, Boardman TJ (2011) Fitting statistical models in bivariate allometry. Biol Rev 86:549–563

    Article  PubMed  Google Scholar 

  • Perry JN (1981) Taylor’s power law for dependence of variance on mean in animal populations. J Roy Stat Soc C-Appl 30:254–263

    Google Scholar 

  • Ramsayer J, Fellous S, Cohen JE, Hochberg ME (2011) Taylor’s Law holds in experimental bacterial populations but competition does not influence the slope. Biol Lett 8:316–319

    Article  PubMed Central  PubMed  Google Scholar 

  • Reschke C (1990) Ecological communities of New York State. New York Natural Heritage Program. New York State Department of Environmental Conservation, Latham, NY

    Google Scholar 

  • SAS Institute (2010) JMP 9. Cary, NC

    Google Scholar 

  • Sawyer AJ (1989) Inconstancy of Taylor’s b: simulated sampling with different quadrat sizes and spatial distributions. Res Popul Ecol 31:11–24

    Article  Google Scholar 

  • Schoener TW, Spiller DA (1992) Is extinction rate related to temporal variability in population size? An empirical answer for orb spiders. Am Nat 139:1176–1207

    Article  Google Scholar 

  • Schuster WSF, Griffin KL, Roth H, Turnbull MH, Whitehead D, Tissue DT (2008) Changes in composition, structure and aboveground biomass over seventy-six years (1930–2006) in the Black Rock Forest, Hudson Highlands, southeastern New York State. Tree Physiol 28:537–549

    Article  CAS  PubMed  Google Scholar 

  • Smith RJ (2009) Use and misuse of the reduced major axis for line-fitting. Am J Phys Anthropol 140(3):476–486

    Article  PubMed  Google Scholar 

  • Taylor LR (1961) Aggregation, variance and the mean. Nature 189:732–735

    Article  Google Scholar 

  • Taylor LR (1984) Assessing and interpreting the spatial distributions of insect populations. Annu Rev Entomol 29:321–357

    Article  Google Scholar 

  • Taylor LR, Woiwod IP, Perry JN (1978) The density-dependence of spatial behavior and the parity of randomness. J Anim Ecol 47:383–406

    Article  Google Scholar 

  • Taylor LR, Perry JN, Woiwod IP, Taylor RAJ (1988) Specificity of the spatial power-law exponent in ecology and agriculture. Nature 332:721–722

    Article  Google Scholar 

  • Vucetich JA, Waite TA, Qvarnemark L, Ibargüen S (2000) Population variability and extinction risk. Conserv Biol 14:1704–1714

    Article  Google Scholar 

  • Xiao X, White EP, Hooten MB, Durham SL (2011) On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92:1887–1894

    Article  PubMed  Google Scholar 

  • Xu C-Y, Turnbull MH, Tissue DT, Lewis JD, Carson R, Schuster WSF, Whitehead D, Walcroft AS, Li J, Griffin KL (2012) Age-related decline of stand biomass accumulation is primarily due to mortality and not to reduction in NPP associated with individual tree physiology, tree growth or stand structure in a Quercus-dominated forest. J Ecol 100:428–440

    Article  Google Scholar 

  • Yamamura K (1990) Sampling scale dependence of Taylor’s power law. Oikos 59:121–125

    Article  Google Scholar 

  • Zar JH (2009) Biostatistical analysis, 5th edn. Pearson, London

    Google Scholar 

Download references

Acknowledgments

We thank Kevin Gaston, Allon Klein, Roy Malka, Michael Plank, and Sabrina Russo for helpful comments; Priscilla K. Rogerson for assistance; and the US National Science Foundation for grants EF-1038337 and DMS-1225529.

Conflict of interest

The authors state that they have no conflict of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel E. Cohen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Schuster, W.S.F. & Cohen, J.E. Robustness of Taylor’s law under spatial hierarchical groupings of forest tree samples. Popul Ecol 57, 93–103 (2015). https://doi.org/10.1007/s10144-014-0463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-014-0463-0

Keywords

Navigation