Skip to main content
Log in

Comparison of the diversity, composition, and host recurrence of xylariaceous endophytes in subtropical, cool temperate, and subboreal regions in Japan

  • Original article
  • Published:
Population Ecology

Abstract

The diversity, composition, and host recurrence of endophytic fungi in the Xylariaceae were compared in subtropical (ST), cool temperate (CT), and subboreal forests (SB) in Japan based on the 28S ribosomal DNA sequences from fungal isolates. A total of 610 isolates were obtained from the leaves of 167 tree species in three sites, which were classified into 42 operational taxonomic units (OTUs) at the 99 % similarity level of the 28S rDNA sequence. ST, CT, and SB yielded 31, 13, and three OTUs, respectively. The OTU richness, diversity, and evenness of fungal communities were in the order: ST > CT > SB. The 42 OTUs were assigned to nine genera in the Xylariaceae: Xylaria, Annulohypoxylon, Anthostomella, Biscogniauxia, Nemania, Hypoxylon, Muscodor, Daldinia, and Rosellinia. Xylarioid isolates in the subfamily Xylarioideae outnumbered Hypoxyloid isolates in the subfamily Hypoxyloideae in ST and CT, whereas the opposite was found in SB. Sørensen’s quotient of similarity was generally low between the three sites. Host recurrence of fungal OTUs was evaluated with the degree of specialization of interaction network between xylariaceous endophytes and plant species and compared between the three sites. We found that the networks in the three sites showed a significantly higher degree of specialization than simulated networks, where partners were associated randomly. Permutational multivariate analyses of variance indicated that plant family and leaf trait significantly affected the OTU composition in ST, which can account for the specialization of interaction network and host recurrence of xylariaceous endophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Amend AS, Seifert KA, Samson R, Bruns TD (2010) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci USA 107:13748–13753

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Carson WP, Schnitzer SA (eds) Tropical forest community ecology. Wiley-Blackwell, West Sussex, pp 254–271

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Balasuriya A, Adikaram NKB (2009) Some spatial, temporal and spatio- temporal considerations of wood decay of tea (Camellia sinensis), caused by Nemania diffusa (Syn. Hypoxylon vestitum). Crop Prot 28:273–279

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Chareprasert S, Piapukiew J, Thienhirun S, Whalley AJS, Sihanonth P (2006) Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World J Microbiol Biotechnol 22:481–486

    Article  Google Scholar 

  • Coleman BD, Mao CX, Chang J (2004) Interpolating, extrapolating and comparing incidence-based species accumulation curves. Ecology 85:2717–2727

    Article  Google Scholar 

  • Collado J, Platas G, Gonzalez I, Pelaez F (1999) Geographical and seasonal influenceon the distribution of fungal endophytes in Quercus ilex. New Phytol 144:525–532

    Article  Google Scholar 

  • Davis EC, Shaw AJ (2008) Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am J Bot 95:914–924

    Article  PubMed  Google Scholar 

  • Enoki T (2003) Microtopography and distribution of canopy trees in a subtropical evergreen broad-leaved forest in the northern part of Okinawa Island, Japan. Ecol Res 18:103–113

    Article  Google Scholar 

  • Frohlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primer with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rust. Mol Ecol 21:113–118

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    Article  PubMed  Google Scholar 

  • Hsieh HM, Ju YM, Rogers JD (2005) Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97:844–865

    Article  PubMed  CAS  Google Scholar 

  • Hsieh HM, Lin CR, Fang MJ, Rogers JD, Fournier J, Lechat C, Ju YM (2010) Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol Phylogenet Evol 54:957–969

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Joshee S, Paulus BC, Park D, Johnston PR (2009) Diversity and distribution of fungal foliar endophytes in New Zealand Podocarpaceae. Mycol Res 113:1003–1015

    Article  PubMed  Google Scholar 

  • Ju YM, Rogers JD (2002) The genus Nemania (Xylariaceae). Nova Hedwig 74:75–120

    Article  Google Scholar 

  • Kinkel LL, Andrews JH (1988) Disinfection of living leaves by hydrogen peroxide. Trans Br Mycol Soc 91:523–528

    Article  CAS  Google Scholar 

  • Kubota Y (2000) Spatial dynamics of regeneration in a conifer/broad-leaved forest in northern Japan. J Veg Sci 11:633–640

    Article  Google Scholar 

  • Linaldeddu BT, Sirca C, Spano D, Franceschini A (2011) Variation of endophytic cork-oak associated fungal communities in relation to plant health and water stress. Forest Pathol 41:193–201

    Article  Google Scholar 

  • Matsuda Y, Hijii N (1999) Characterization and identification of Strobilomyces confusus ectomycorrhizas on momi fir by RFLP analysis of the PCR-amplified ITS region of the rDNA. J For Res 4:145–150

    Article  Google Scholar 

  • Miura K, Kudo M (1970) An agar-medium for aquatic hyphomycetes. Trans Mycol Soc Japan 11:116–118 (in Japanese with English abstract)

    Google Scholar 

  • Morakotkarn D, Kawasaki H, Seki T (2007) Molecular diversity of bamboo-associated fungi isolated from Japan. FEMS Microb Let 266:10–19

    Article  CAS  Google Scholar 

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233

    Google Scholar 

  • Okane I, Srikitikulchai P, Toyama K, Læssøe T, Sivichai S, Hywel-Jones N, Nakagiri A, Potacharoen W, Suzuki K (2008) Study of endophytic Xylariaceae in Thailand: diversity and taxonomy inferred from rDNA sequence analyses with saprobes forming fruit bodies in the field. Mycoscience 49:359–372

    Article  CAS  Google Scholar 

  • Okane I, Srikitikulchai P, Tabuchi Y, Sivichai S, Nakagiri A (2012) Recognition and characterization of four Thai xylariaceous fungi inhabiting various tropical foliages as endophytes by DNA sequences and host plant preference. Mycoscience 53:122–132

    Article  CAS  Google Scholar 

  • Oksanen JF, Blanchet G, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHM, Wagner H (2010) Vegan: community ecology package. R package version 1.17-4

  • Opik MM, Moora J, Liira J, Zobel M (2006) Comparison of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Osono T (2008) Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age dependent variations. Mycologia 100:387–391

    Article  PubMed  Google Scholar 

  • Osono T (2011) Diversity and functioning of fungi associated with leaf litter decomposition in Asian forests of different climatic regions. Fungal Ecol 4:375–385

    Article  Google Scholar 

  • Osono T, Masuya H (2012) Endophytic fungi associated with leaves of Betulaceae in Japan. Can J Microbiol 58:507–515

    Article  PubMed  CAS  Google Scholar 

  • Osono T, Mori A (2005) Seasonal and leaf age-dependent changes in occurrence of phyllosphere fungi of giant dogwood. Mycoscience 46:273–279

    Article  Google Scholar 

  • Osono T, Takeda H (1999) A methodological survey on incubation of fungi on leaf litter of Fagus crenata. Appl For Sci Kansai 8:103–108 (in Japanese with English abstract)

    Google Scholar 

  • Osono T, To-Anun C, Hagiwara Y, Hirose D (2011a) Decomposition of wood, petiole, and leaf litter by Xylaria species from northern Thailand. Fungal Ecol 4:210–218

    Article  Google Scholar 

  • Osono T, Hagiwara Y, Masuya H (2011b) Effects of temperature and litter type on fungal growth and decomposition of leaf litter. Mycoscience 52:327–332

    Article  CAS  Google Scholar 

  • Osono T, Tateno O, Masuya H (2013) Diversity and ubiquity of xylariaceous endophytes in live and dead leaves of temperate forest trees. Mycoscience 53:54–61

    Article  Google Scholar 

  • Peláez FV, González V, Platas G, Sánchez-Ballesteros J, Rubio V (2008) Molecular phylogenetic studies within the Xylariaceae based on ribosomal DNA sequences. Fungal Divers 31:111–134

    Google Scholar 

  • Petrini L, Petrini O (1985) Xylariaceous fungi as endophytes. Sydowia 38:216–234

    Google Scholar 

  • Petrini O, Fisher PJ (1988) A comparative study of fungal endophytes in xylem and whole stem of Pinus sylvestris and Fagus sylvatica. Trans Br Mycol Soc 91:233–238

    Article  Google Scholar 

  • Petrini O, Fisher PJ (1990) Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycol Res 94:1077–1080

    Article  Google Scholar 

  • Petrini O, Petrini LE, Rodrigues KF (1995) Xylariaceous endophytes: an exercise in biodiversity. Fitopatologia Brasieira 20:531–539

    Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rodrigues KF (1994) The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologia 86:376–385

    Article  Google Scholar 

  • Rodrigues KF, Samuels GJ (1999) Fungal endophytes of Spondias mombin leaves in Brazil. J Basic Microbiol 39:131–135

    Article  Google Scholar 

  • Rogers JD (1984) Xylaria magnoliae sp. nov. and comments on several other fruit-inhabiting species. Can J Bot 57:941–945

    Article  Google Scholar 

  • Rogers JD (2000) Thoughts and musings on tropical Xylariaceae. Mycol Res 104:1412–1420

    Article  Google Scholar 

  • Schleuning M, Fründ J, Klein AM, Abrahamczyk S, Alarcón R, Albrecht M, Andersson GKS, Bazarian S, Böhning-Gaese K, Bommarco R, Dalsgaard B, Dehling DM, Hagen AGM, Hickler T, Holzschuh A, Kaiser-Bunbury CN, Kreft H, Morris RJ, Sandel B, Sutherland WJ, Svenning JC, Tscharntke T, Watts S, Weiner CN, Werner M, Williams NM, Winqvist C, Dormann CF, Blüthgen N (2012) Specialization of mutualistic interaction networks decreases toward tropical latitudes. Cur Biol 22:1–7

    Article  CAS  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 2:75–89

    Article  Google Scholar 

  • Soca-Chafre G, Rivera-Orduna FN, Hidalgo-Lara ME, Hernandez-Rodriguez C, Marsch R, Flores-Cotera LB (2011) Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa. Fungal Biol 115:143–156

    Article  PubMed  CAS  Google Scholar 

  • Stadler M, Fournier J, Laessoe T, Lechat C, Tichy HV, Piepenbring M (2008) Recognition of hypoxyloid and xylarioid Entonaema species and allied Xylaria species from a comparison of holomorphic morphology, HPLC profiles, and ribosomal DNA sequences. Mycol Progr 7:53–73

    Article  Google Scholar 

  • Tang AMC, Jeewon R, Hyde KD (2007) Phylogenetic relationships of Nemania plumbea sp. nov. and related taxa based on ribosomal ITS and RPB2 sequences. Mycol Res 111:392–402

    Article  PubMed  CAS  Google Scholar 

  • Tang AMC, Jeewon R, Hyde KD (2009) A re-evaluation of the evolutionary relationships within the Xylariaceae based on ribosomal and protein-coding gene sequences. Fungal Divers 34:127–155

    Google Scholar 

  • Tateno R, Takeda H (2003) Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor. Ecol Res 18:559–571

    Article  Google Scholar 

  • Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 185:351–354

    Article  PubMed  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Koljalg U (2010) 454 pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301

    Article  PubMed  CAS  Google Scholar 

  • Unterseher M, Schnittler M (2010) Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech (Fagus sylvatica). Fungal Ecol 3:366–378

    Article  Google Scholar 

  • Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3:122–138

    Article  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    PubMed  CAS  PubMed Central  Google Scholar 

  • Whalley AJS (1993) Tropical Xylariaceae: their distribution and ecological characteristics. In: Issac S, Frankland JC, Watling R, Whalley AJS (eds) Aspects of tropical mycology. Cambridge University Press, Cambridge, pp 103–119

    Google Scholar 

  • Whalley AJS (1996) The xylariaceous way of life. Mycol Res 100:897–922

    Article  Google Scholar 

  • Widden P, Parkinson D (1973) Fungi from Canadian coniferous forest soils. Can J Bot 51:2275–2290

    Article  Google Scholar 

  • Yuan ZL, Rao LB, Chen YC, Zhang CL, Wu YG (2011) From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biol 115:197–213

    Article  PubMed  Google Scholar 

  • Zhou D, Hyde KD (2001) Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105:1449–1457

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. A. Takashima and staff at the Yona Experimental Forest, University of the Ryukyus for help with fieldwork; Dr. I. Okane for useful discussions; and Dr. M. Ushio, Dr. S. Sakai, and Ms. C. Sakaguchi for help with the data analyses. This study received partial financial support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) (No. 23770083) to T.O., the Global COE Program A06 and Grants for Excellent Graduate Schools, MEXT, Japan (12-01) to Kyoto University, the Global Environmental Research Fund (RF-086) of the Ministry of the Environment, Japan to H.M., the Japan Securities Scholarship Foundation and the Sumitomo Foundation to A.S.M., and the “Academic Frontier” Project for Private Universities: a matching fund subsidy from MEXT to D.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Osono.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, A., Matsuoka, S., Masuya, H. et al. Comparison of the diversity, composition, and host recurrence of xylariaceous endophytes in subtropical, cool temperate, and subboreal regions in Japan. Popul Ecol 56, 289–300 (2014). https://doi.org/10.1007/s10144-013-0412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-013-0412-3

Keywords

Navigation