Population Ecology

, Volume 49, Issue 3, pp 191–200

Robustness and uncertainty in estimates of butterfly abundance from transect counts

Authors

    • Department of StatisticsNorth Carolina State University
    • Biomathematics ProgramNorth Carolina State University
  • Eric J. Kalendra
    • Department of StatisticsNorth Carolina State University
  • Brian R. Hudgens
    • Department of ZoologyNorth Carolina State University
  • Nick M. Haddad
    • Department of ZoologyNorth Carolina State University
Original Article

DOI: 10.1007/s10144-007-0034-8

Cite this article as:
Gross, K., Kalendra, E.J., Hudgens, B.R. et al. Popul Ecol (2007) 49: 191. doi:10.1007/s10144-007-0034-8

Abstract

Many butterfly populations are monitored by counting the number of butterflies observed while walking transects during the butterfly’s flight season. Methods for estimating population abundance from these transect counts are appealing because they allow rare populations to be monitored without capture–recapture studies that could harm fragile individuals. An increasingly popular method for estimating abundance from transect counts relies on strong assumptions about the counting process and the processes that govern butterfly population dynamics. Here, we study the statistical performance of this method when underlying model assumptions are violated. We find that estimates of population size are robust to departures from underlying model assumptions, but that the uncertainty in these estimates (i.e., confidence intervals) is substantially underestimated. Alternative bootstrap and Bayesian methods provide better measures of the uncertainty in estimated population size, but are conditional upon knowledge of butterfly detectability. Because of these requirements, a mixed approach that combines data from small capture–recapture studies with transect counts strikes the best balance between accurate monitoring and minimal injury to individuals. Our study is motivated by monitoring studies for St. Francis satyr (Neonympha mitchelli francisci), a rare and relatively immobile butterfly occurring only in the sandhills region of south-central North Carolina, USA.

Keywords

AbundanceBayesian statisticsEstimationParametric bootstrapPopulation monitoring

Copyright information

© The Society of Population Ecology and Springer 2007