Skip to main content
Log in

Identification of candidate genes JcARF19 and JcIAA9 associated with seed size traits in Jatropha

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Jatropha curcas is a new promising bioenergy crop due to the high oil content in its seeds that can be converted into biodiesel. Seed size, a major determinant of Jatropha oil yield, is a target trait for Jatropha breeding. Due to the vital roles of phytohormone auxin in controlling seed and fruit development, we screened key genes in auxin pathway including ARF and IAA families and downstream effectors to identify candidate genes controlling seed size in Jatropha. As a result, JcARF19 was mapped in the major quantitative trait locus (QTL) region and significantly associated with seed length. By using expression QTL (eQTL) analysis to link variants with functional candidate genes, we provided evidences that seed traits were affected by the interaction of JcARF19 and JcIAA9. ARF19 and IAA9, involved in auxin signal transduction, were conserved in higher plants. These data including the single-nucleotide polymorphisms (SNPs) in the two genes could lead to utilization of the genes by integrating favored alleles into elite varieties through marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ARF:

Auxin response factor

bp:

Base pair

kbp:

Kilobase pair

LG:

Linkage group

MAS:

Marker-assisted selection

PCR:

Polymerase chain reaction

QTL:

Quantitative trait locus

SE:

Standard error

SNP:

Single-nucleotide polymorphism

SSR:

Simple sequence repeat

RT:

Reverse transcriptase

References

  • Almeida J, Achten WMJ, Duarte MP, Mendes B, Muys B (2011) Benchmarking the environmental performance of the Jatropha biodiesel system through a generic life cycle assessment. Environ Sci Technol 45:5447–5453

    Article  CAS  Google Scholar 

  • Bailis RE, Baka JE (2010) Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil. Environ Sci Technol 44:8684–8691

    Article  CAS  PubMed  Google Scholar 

  • Berleth T, Krogan NT, Scarpella E (2004) Auxin signals—turning genes on and turning cells around. Curr Opin Plant Biol 7:553–563

    Article  CAS  PubMed  Google Scholar 

  • Durbak A, Yao H, McSteen P (2012) Hormone signaling in plant development. Curr Opin Plant Biol 15:92–96

    Article  CAS  PubMed  Google Scholar 

  • Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover PX, Purugganan MD (2009) Candidate gene association mapping of Arabidopsis flowering time. Genet 183:325–335

    Article  CAS  Google Scholar 

  • Green P, Falls K, Crooks S (1990) Documentation for CRI-MAP, version 2.4. Washington University School of Medicine

  • Gu K, Yi C, Tian D, Singh JS, Hong Y, Yin Z (2012) Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas. Biotechnol Biofuels 1:47

    Article  Google Scholar 

  • Harper J, Lovell P, Moore K (1970) The shapes and sizes of seeds. Annu Rev Ecol Syst 1:327–356

    Article  Google Scholar 

  • Ioio RD, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Sci 322:1380

    Article  Google Scholar 

  • Jiménez-Gómez JM, Wallace AD, Maloof JN (2010) Network analysis identifies ELF3 as a QTL for the shade avoidance response in Arabidopsis. PLoS Genet 6:e1001100

    Article  PubMed Central  PubMed  Google Scholar 

  • Jimenez-Gomez JM, Corwin JA, Joseph B, Maloof JN, Kliebenstein DJ (2011) Genomic analysis of QTLs and genes altering natural variation in stochastic noise. PLoS Genet 7:e1002295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Singh J, Nanoti SM, Garg MO (2012) A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India. Bioresour Technol 110:723–729

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Park JW, Lee HW, Kim J (2009) Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J Exp Bot 60:3935–3957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu P, Wang C, Li L, Sun F, Yue G (2011) Mapping QTLs for oil traits and eQTLs for oleosin genes in jatropha. BMC Plant Biol 11:132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Andujar C, Martin RC, Nonogaki H (2012) Seed traits and genes important for translational biology—highlights from recent discoveries. Plant Cell Physiol 53:5–15

    Article  CAS  PubMed  Google Scholar 

  • Ochiai K, Shimizu A, Okumoto Y, Fujiwara T, Matoh T (2011) Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice. Plant Physiol 156:1457–1463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okushima Y, Mitina I, Quach HL, Theologis A (2005a) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43:29–46

    Article  CAS  PubMed  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D (2005b) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. The Plant Cell Online 17:444–463

    Article  CAS  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. The Plant Cell Online 19:118–130

    Article  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665

    Article  CAS  PubMed  Google Scholar 

  • Sanderson K (2009) Wonder weed plans fail to flourish. Nat 461:328–329

    Article  CAS  Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sladek R, Hudson T (2006) Elucidating cis-and trans-regulatory variation using genetical genomics. Trends Genet 22:245–250

    Article  CAS  PubMed  Google Scholar 

  • Sterken R, Kiekens R, Boruc J, Zhang F, Vercauteren A, Vercauteren I, De Smet L, Dhondt S, Inzé D, De Veylder L (2012) Combined linkage and association mapping reveals CYCD5; 1 as a quantitative trait gene for endoreduplication in Arabidopsis. Proc Natl Acad Sci 109:4678–4683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun F, Liu P, Ye J, Lo L, Cao S, Li L, Yue G, Wang C (2012) An approach for jatropha improvement using pleiotropic QTLs regulating plant growth and seed yield. Biotechnol for Biofuels 5:42

    Article  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. The Plant Cell Online 15:533–543

    Article  CAS  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M (2005a) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. The Plant Cell Online 17:2676–2692

    Article  CAS  Google Scholar 

  • Wang S, Basten C, Zeng Z (2005) Windows QTL Cartographer V2. 5. In

  • Wang CM, Liu P, Yi C, Gu K, Sun F, Li L, Lo LC, Liu X, Feng F, Lin G, Cao S, Hong Y, Yin Z, Yue GH (2011) A first generation microsatellite- and SNP-based linkage map of Jatropha. PLoS One 6:e23632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J, Liu Y, Tang L, Zhang F, Chen F (2011) A study on structural features in early flower development of Jatropha curcas L. and the classification of its inflorescences. Afr J Agric Res 6:275–284

    Google Scholar 

  • Xue LJ, Zhang JJ, Xue HW (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res 37:916–930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang JH, Han SJ, Yoon EK, Lee WS (2006) Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res 34:1892–1899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye J, Qu J, Bui HT, Chua NH (2009) Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing. Plant Biotechnol J 7:964–976

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Hong Y, Qu J, Wang C (2012) Improvement of Jatropha oil by genetic transformation Springer Science Publishers, New York

  • Yin Z, Meng F, Song H, Wang X, Xu X, Yu D (2010) Expression quantitative trait loci analysis of two genes encoding rubisco activase in soybean. Plant Physiol 152:1625–1637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu C, Yu J (2009) Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genet 182:875–888

    Article  Google Scholar 

Download references

Acknowledgments

The work is part of the project “Genetic Improvement of Jatropha” initiated and coordinated by Professor Nam-Hai Chua, Rockefeller University, USA. We thank Dr. Frederic Berger, Yan Hong, Chengxin Yi, Zhongchao Yin, Jing Li, and Mr. Xuezhi Ouyang (Temasek Life Sciences Laboratory, Singapore) for providing materials and valuable technical assistance on this work. This work was supported by the Temasek Life Sciences Laboratory, JOil(S) Pte, and Strategic Priority Research Programof the Chinese Academy of Sciences Grant No. XDB11040300. CMW is supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, 010809001), the Fundamental Research Funds for the Central Universities (KYRC201208, KYZ201202-6), and “Shuangchuang” projects, Jiangsu Province, China. JY and YWS were supported by Strategic Priority Research Programof the Chinese Academy of Sciences Grant No. XDB11040300. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genhua Yue or Chunming Wang.

Additional information

Authors’ contribution

JY and CMW conceived the experiments. CMW, PL, XHW and FS collected genotype and phenotype data. CSZ, YWS and JQ analyzed the data. JY and CMW analyzed the data and wrote the manuscript. GHY supervised the project on Jatropha molecular breeding and revised the manuscript. All authors read and approved the final manuscript.

Jian Ye and Peng Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 57 kb)

ESM 2

(DOC 29 kb)

ESM 3

(DOC 712 kb)

ESM 4

(DOC 80 kb)

ESM 5

(DOC 39 kb)

ESM 6

(DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Liu, P., Zhu, C. et al. Identification of candidate genes JcARF19 and JcIAA9 associated with seed size traits in Jatropha. Funct Integr Genomics 14, 757–766 (2014). https://doi.org/10.1007/s10142-014-0400-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0400-5

Keywords

Navigation