Skip to main content
Log in

Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The xylem sap of a plant is primarily responsible for transporting molecules from the underground root system to the aboveground parts of the plant body. In order to understand the role that roots play in cotton growth and development, the components present in xylem sap must be elucidated. In this study, we used a shotgun HPLC-ESI-MS/MS proteomics approach to identify 455 peptides from the xylem sap of field-grown cotton plants at peak blooming stage. Of these peptides, 384 (84.4 %) were found to be secreted proteins and 320 (70.3 %) had special molecular functions. Based on Gene Ontology (GO) analysis, 348 peptides were annotated in terms of molecular function, biological process, and cellular localization, with 46.9 and 45.1 % being related to catalytic activity and binding activity, respectively. Many xylem sap-containing proteins were predicted to be involved in different phases of xylem differentiation including cell wall metabolism, secondary cell wall development and patterning, and programmed cell death. The identification of starch and sucrose hydrolyzing enzymes implicated the interaction between roots and aboveground parts on the aspect of carbohydrate metabolism. Many of the proteins identified in this study are involved in defense mechanisms including pathogen-related proteins, such as peroxidases, chitinases, and germin-like proteins, proteases involved in disease resistance, and phytoalexin phenylpropanoid synthesis-related proteins. The majority of identified signaling proteins were fasciclin-like arabinogalactan proteins and kinases. The results of this study provide useful insight into the communication mechanisms between cotton roots and the rest of the cotton plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  • Agrawal GK, Jwa N-S, Lebrun M-H, Job D, Rakwal R (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10(4):799–827

    Article  CAS  PubMed  Google Scholar 

  • Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of arabidopsis thaliana. Frontiers in Plant Science 4:1–17

    Article  Google Scholar 

  • Alvarez S, Goodger JQD, Marsh EL, Chen S, Asirvatham VS, Schachtman DP (2006) Characterization of the maize xylem sap proteome. J Proteome Res 5:963–972

    Article  CAS  PubMed  Google Scholar 

  • Alvarez S, Marsh EL, Schroeder SG, Schactman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340

    Article  CAS  PubMed  Google Scholar 

  • Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The biochemistry of plants. Academic, New York, pp 297–371

    Chapter  Google Scholar 

  • Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Selection 17(4):349–356

    Article  CAS  Google Scholar 

  • Bendtsen JD, Kiemer L, Fausboll A, Brunak S (2005) Non-classical protein secretion in bacteria. BMC Microbiol 5(1):58

    Article  PubMed Central  PubMed  Google Scholar 

  • Biles CL, Abeles FB (1991) Xylem sap proteins. Plant Physiol 96(2):597–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bollhöner B, Prestele J, Tuominen H (2012) Xylem cell death: emerging understanding of regulation and function. J Exp Bot. doi:10.1093/jxb/err438

    PubMed  Google Scholar 

  • Buhtz A, Kolasa A, Arlt K, Walz C, Kehr J (2004) Xylem sap protein composition is conserved among different plant species. Planta 219(4):610–618

    Article  CAS  PubMed  Google Scholar 

  • Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to (peptido) glycans. Mol Microbiol 68(4):838–847

    Article  CAS  PubMed  Google Scholar 

  • Carpta NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of walls during growth. Plant J 3(1):1–30

    Article  Google Scholar 

  • Casasoli M, Spadoni S, Lilley KS, Cervone F, De Lorenzo G, Mattei B (2008) Identification by 2-D DIGE of apoplastic proteins regulated by oligogalacturonides in arabidopsis thaliana. Proteomics 8(5):1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Cheng FY, Blackburn K, Lin YM, Goshe MB, Williamson JD (2009) Absolute protein quantification by LC/MSE for global analysis of salicylic acid-induced plant protein secretion responses. J Proteome Res 8(1):82–93

    Article  CAS  PubMed  Google Scholar 

  • Chivasa S, Simon WJ, Yu XL, Yalpani N, Slabas AR (2005) Pathogen elicitor-induced changes in the maize extracellular matrix proteome. Proteomics 5(18):4894–4904

    Article  CAS  PubMed  Google Scholar 

  • Cho WK, Chen XY, Chu H, Rim Y, Kim S, Kim ST, Kim SW, Park ZY, Kim JY (2009) Proteomic analysis of the secretome of rice calli. Physiol Plant 135(4):331–341

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1997a) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:171–201

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1997b) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9(7):1031–1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dafoe NJ, Constabel CP (2009) Proteomic analysis of hybrid poplar xylem sap. Phytochemistry 70(7):856–863

    Article  CAS  PubMed  Google Scholar 

  • Delaunois B, Colby T, Belloy N, Conreux A, Harzen A, Baillieul F, Clément C, Schmidt J, Jeandet P, Cordelier S (2013) Large-scale proteomic analysis of the grapevine leaf apoplastic fluid reveals mainly stress-related proteins and cell wall modifying enzymes. BMC Plant Biol 13:24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci 99(24):15794–15799

    Article  PubMed Central  PubMed  Google Scholar 

  • Djordjevic MA, Oakes M, Li DX, Hwang CH, Hocart CH, Gresshoff PM (2007) The glycine max xylem sap and apoplast proteome. J Proteome Res 6(9):3771–3779

    Article  CAS  PubMed  Google Scholar 

  • Floerl S, Druebert C, Majcherczyk A, Karlovsky P, Kües U, Polle A (2008) Defence reactions in the apoplastic proteome of oilseed rape (brassica napus var. napus) attenuate verticillium longisporum growth but not disease symptoms. BMC Plant Biology 8:129

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaspar YM, Johnson KL, McKenna JA, Bacic A, Schultz CJ (2001) The complex structures of arabinogalactan-proteins and the journey towards understanding. Plant Mol Biol 47:161–176

  • Gens JS, Fujiki M, Pickard BG (2000) Arabinogalactan proteins and wall associated kinases in a plasmalemmal reticulum with specialized vesicles. Protoplasma 212:115–134

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Nothnagel EA (2004) Binding of arabinogalactan proteins by yariv phenylglycoside triggers wound-like responses in arabidopsis cell cultures. Plant Physiol 135(3):1346–1366

    Article  PubMed Central  PubMed  Google Scholar 

  • Gust AA, Willmann R, Desaki Y, Grabherr HM, Nürnberger T (2012) Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci 17(8):495–502

    Article  CAS  PubMed  Google Scholar 

  • Houterman PM, Speijer D, Dekker HL, DE Koster CG, Cornelissen BJC, Rep M (2007) The mixed xylem sap proteome of fusarium oxysporum-infected tomato plants. Mol Plant Pathol 8(2):215–221

    Article  CAS  PubMed  Google Scholar 

  • Ishihama Y, Sato T, Tabata T, Miyamoto N, Sagane K, Nagasu T, Oda Y (2005) Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat Biotechnol 23(5):617–621

  • Jamet E, Albenne C, Boudart G, Irshad M, Canut H, Pont-Lezica R (2008) Recent advances in plant cell wall proteomics. Proteomics 8(4):893–908

    Article  CAS  PubMed  Google Scholar 

  • Kehr J, Buhtz A, Giavalisco P (2005) Analysis of xylem sap proteins from Brassica napus. BMC Plant Biology 5:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Ligat L, Lauber E, Albenne C, Clemente HS, Valot B, Zivy M, Pont-Lezica R, Arlat M, Jamet E (2011) Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins. Proteomics 11(9):1798–1813

    Article  CAS  PubMed  Google Scholar 

  • Liu JS, Zheng SC, Liu L, Li L, Feng QL (2010) Protein profiles of the midgut of spodoptera litura Larvae at the sixth instar feeding stage by shotgun ESI-MS approach. J Proteome Res 9:2117–2147

  • Minic Z (2008) Physiological roles of plant glycoside hydrolases. Planta 227(4):723–740

    Article  CAS  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10(1):1–6

  • Nombela C, Gil C, Chaffin WL (2006) Non-conventional protein secretion in yeast. Trends Microbiol 14(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Fukuda H (2013) Spatial organization of xylem cell walls by ROP GTPases and microtubule-associated proteins. Curr Opin Plant Biol 16(6):743–748

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Hasezawa S (2006) Cytoskeletal organization during xylem cell differentiation. J Plant Res 119(3):167–177

    Article  PubMed  Google Scholar 

  • Oda A, Sakuta C, Masuda S, Mizoguchi T, Kamada H, Satoh S (2003) Possible involvement of leaf gibberellins in the clock-controlled expression of XSP30, a gene encoding a xylem sap lectin, in cucumber roots. Plant Physiol 133(4):1779–1790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540

    Article  CAS  PubMed  Google Scholar 

  • Rep M, Dekker HL, Vossen JH, de Boer AD, Houterman PM, Speijer D, Back JW, de Koster CG, Cornelissen BJC (2002) Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiol 130(2):904–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rep M, Dekker HL, Vossen JH, de Boer AD, Houterman PM, de Koster CG, Cornelissen BJC (2003) A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins. FEBS Lett 534:82–86

    Article  CAS  PubMed  Google Scholar 

  • Sakuta C, Satoh S (2000) Vascular tissue-specific gene expression of xylem sap glycine-rich proteins in root and their localization in the walls of metaxylem vessels in cucumber. Plant Cell Physiol 41(5):627–638

    Article  CAS  PubMed  Google Scholar 

  • Salazar MM, Nascimento LC, Camargo ELO, Gonçalves DC, Neto JL, Marques WL, Teixeira PJPL, Mieczkowski P, Mondego JMC, Carazzolle MF, Deckmann AC, Pereira GAG (2013) Xylem transcription profiles indicate potential metabolic responses for economically relevant characteristics of Eucalyptus species. BMC Genomics 14:201–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh S (2006) Organic substances in xylem sap delivered to above-ground organs by the roots. J Plant Res 119(3):179–187

    Article  CAS  PubMed  Google Scholar 

  • Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, van der Hoorn RAL (2008) Fungal effector protein AVR2 targets diversifying defense-related Cys proteases of tomato. Plant Cell 20(4):1169–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Subramanian S, Cho U-H, Keyes C, Yu O (2009) Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions. BMC Plant Biology 9:119

    Article  PubMed Central  PubMed  Google Scholar 

  • Taliercio EW, Romano G, Scheffler J, Ayre BG (2009) Expression of genes associated with carbohydrate metabolism in cotton stems and roots. BMC Plant Biology 9:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Tan L, Showalter AM, Egelund J, Hernandez-Sanchez A, Doblin MS, Antony B (2012) Arabinogalactan-proteins and the research challenged for these enigmatic plant cell surface proteoglycans. Front Plant Sci 3:1–10

    Article  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Van der Hoorn RAL, Jones JDG (2004) The plant proteolytic machinery and its role in defence. Curr Opin Plant Biol 7(4):400–407

    Article  PubMed  Google Scholar 

  • Van Loon LC, van Strien EA (1999) The families of pathogenesis related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55(2):85–97

    Article  Google Scholar 

  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in arabidopsis. The Plant Cell 20(2):471–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Li B, Du MW, Eneji AE, Wang BM, Duan LS, Li ZH, Tian XL (2012) Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J Exp Bot 63(16):5887–5901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362

    Article  CAS  PubMed  Google Scholar 

  • Xia Y (2004) Proteases in pathogenesis and plant defence. Cell Microbiol 6(10):905–913

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Tian XL, Duan LS, Wang BM, He ZP, Li ZH (2007) Differential responses of conventional and Bt-transgenic cotton to potassium deficiency. J Plant Nutr 30:659–670

    Article  CAS  Google Scholar 

  • Zhang ZY, Zhang X, Wang SF, Xin WW, Tang JX, Wang QL (2013) Effect of mechanical stress on cotton growth and development. PLoS ONE 8(12):e82256. doi:10.1371/journal.pone.0082256

Download references

Acknowledgment

This research was supported by the National Natural Science Foundation of China (31271648) and the Science and Technology Innovation Talents Project of Henan Province of China (114100510008). This research was also supported by the National High Technology Research and Development Program of China (Program 863) (2011AA10A102), the Industry Technology System of Cotton in Henan China (S2013-07) and the National Genetically Modified Organisms Breeding Technology Major Projects of China (2014ZX08005-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglian Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Xin, W., Wang, S. et al. Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development. Funct Integr Genomics 15, 17–26 (2015). https://doi.org/10.1007/s10142-014-0395-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0395-y

Keywords

Navigation