Skip to main content
Log in

Wheat Zapper: a flexible online tool for colinearity studies in grass genomes

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

In the course of evolution, the genomes of grasses have maintained an observable degree of gene order conservation. The information available for already sequenced genomes can be used to predict the gene order of nonsequenced species by means of comparative colinearity studies. The “Wheat Zapper” application presented here performs on-demand colinearity analysis between wheat, rice, Sorghum, and Brachypodium in a simple, time efficient, and flexible manner. This application was specifically designed to provide plant scientists with a set of tools, comprising not only synteny inference, but also automated primer design, intron/exon boundaries prediction, visual representation using the graphic tool Circos 0.53, and the possibility of downloading FASTA sequences for downstream applications. Quality of the “Wheat Zapper” prediction was confirmed against the genome of maize, with good correlation (r > 0.83) observed between the gene order predicted on the basis of synteny and their actual position on the genome. Further, the accuracy of “Wheat Zapper” was calculated at 0.65 considering the “Genome Zipper” application as the “gold” standard. The differences between these two tools are amply discussed, making the point that “Wheat Zapper” is an accurate and reliable on-demand tool that is sure to benefit the cereal scientific community. The Wheat Zapper is available at http://wge.ndsu.nodak.edu/wheatzapper/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tags

Brachypodium :

Brachypodium distachyon

TC:

Tentative consensus sequence

WZ:

Wheat Zapper

GZ:

Genome Zipper

BLAST:

Basic Local Alignment Search Tool

BLASTn:

Basic Local Alignment Search Tool for nucleotides

References

  • Abrouk M, Murat F, Pont C et al (2010) Paleogenomics of plants: synteny-based modeling of extinct ancestors. Trends Plant Sci 15(9):479–487

    Article  PubMed  CAS  Google Scholar 

  • Bolot S, Abrouk M, Masood-Quraishi et al (2009) The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol 12:119–125

    Article  PubMed  CAS  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  PubMed  CAS  Google Scholar 

  • Dolezel J, Kubalakova M, Paux E, Bartos J, Feuillet C (2007) Chromosome-based genomics in cereals. Chromosome Res 15:51–66

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Gill BS (2002) Genome targeting and high-resolution mapping of the domestication gene Q in wheat. Genome 45:706–718

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  Google Scholar 

  • Feuillet C, Stein N, Rossini L et al (2012) Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics 12:573–583

    Article  PubMed  CAS  Google Scholar 

  • Food and Agriculture Organization (2010) FAO Statistical Year Book 2010. Rome, Italy, FAO

    Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    PubMed  CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R et al (2011) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186

    Article  PubMed  Google Scholar 

  • Hernandez P, Martis M, Dorado G et al (2012) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Krattinger S, Wicker T, Keller B (2009) Map-based cloning of genes in Triticeae (wheat and barley). In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, New York, pp 337–358

    Chapter  Google Scholar 

  • Krzywinski MI, Schein J, Bitol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    Article  PubMed  CAS  Google Scholar 

  • Liang F, Holt I, Pertea G et al (2000) An optimized protocol for analysis of EST sequences. Nucleic Acids Res 28:3657–3665

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Deal KR, Akhunov ED et al (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Nat Acad Sc 106:15780–15785

    Article  CAS  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23(4):1249–1263

    Article  PubMed  CAS  Google Scholar 

  • Michalak de Jimenez M, Bassi FM, Ghavami F et al (2013) Radiation hybrid map of chromosome 1D reveals synteny conservation at a wheat speciation locus. Funct Integr Genomics ADJOIN PAPER

  • Ouyang S, Zhu W, Hamilton J et al (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucl Acids Res 35:D846–D851

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Bruggman R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Sourdille P, Salse J et al (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  PubMed  CAS  Google Scholar 

  • Quraishi UM, Abrouk M, Murat F et al (2011) Cross-genome map based dissection of a nitrogen use efficiency ortho-meta QTL in bread wheat unravels concerted cereal genome evolution. Plant J 65:745–756

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Bolot S, Throude M et al (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10(6):1360–1385

    Article  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Schnurbusch T, Collins NC, Eastwood RF et al (2007) Fine mapping and targeted SNP survey using rice–wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor Appl Genet 115:451–461

    Article  PubMed  CAS  Google Scholar 

  • Springer NM, Ying K, Fu Y et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5(11):e1000734

    Article  PubMed  Google Scholar 

  • Swigonova Z, Lai J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed  CAS  Google Scholar 

  • Terracciano I, Maccaferri M, Bassi F et al (2013) Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.). Theor Appl Genet. doi:10.1007/s00122-012-2038-9

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Untergasser A, Nijveen H, Rao X et al (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed  Google Scholar 

  • Vitulo N, Albiero A, Forcato C et al (2011) First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One 6(10):e26421

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all our beta testers for very insightful suggestions. This work was supported by funding from the National Science Foundation, Plant Genome Research Program (NSF-PGRP) grant no. IOS-0822100 to SFK. FMB was partially supported by Program Master and Back Regione Autonoma della Sardegna and Monsanto Beachell-Borlaug International Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahryar F. Kianian.

Additional information

Loai M. Alnemer, Raed I. Seetan, and Filippo M. Bassi contributed equally to this paper.

Electronic supplementary material

Supplementary information provides a precise description of the Intron/Exon prediction algorithm and data supporting the evaluation of ‘Wheat Zapper’ against the genome of maize (Fig. S1 and Table S1).

ESM 1

DOCX 31 kb

Table S2

Spread sheet for the evaluation of synteny prediction calculated by ‘Wheat Zapper’. a Provides a comparison between the predictions of ‘Wheat Zapper’ and ‘Genome Zipper’ for the synteny relationships between Brachypodium, Sorghum, and wheat chromosome 5A. b Provides a list of orthologus genes predicted to be located within the Q gene interval, including the causal locus (highlighted in green; (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alnemer, L.M., Seetan, R.I., Bassi, F.M. et al. Wheat Zapper: a flexible online tool for colinearity studies in grass genomes. Funct Integr Genomics 13, 11–17 (2013). https://doi.org/10.1007/s10142-013-0317-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-013-0317-4

Keywords

Navigation