Skip to main content
Log in

Identification of an miRNA candidate reflects the possible significance of transcribed microsatellites in the hairpin precursors of black pepper

  • Short Communication
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Plant miRNAs (18-24nt) are generated by the RNase III-type Dicer endonuclease from the endogenous hairpin precursors (‘pre-miRNAs’) with significant regulatory functions. The transcribed regions display a higher frequency of microsatellites, when compared to other regions of the genomic DNA. Simple sequence repeats (SSRs) resulting from replication slippage occurring in transcripts affect the expression of genes. The available experimental evidence for the incidence of SSRs in the miRNA precursors is limited. Considering the potential significance of SSRs in the miRNA genes, we carried out a preliminary analysis to verify the presence of SSRs in the pri-miRNAs of black pepper (Piper nigrum L.). We isolated a (CT) dinucleotide SSR bearing transcript using SMART strategy. The transcript was predicted to be a ‘pri-miRNA candidate’ with Dicer sites based on miRNA prediction tools and MFOLD structural predictions. The presence of this ‘miRNA candidate’ was confirmed by real-time TaqMan assays. The upstream sequence of the ‘miRNA candidate’ by genome walking when subjected to PlantCARE showed the presence of certain promoter elements, and the deduced amino acid showed significant similarity with NAP1 gene, which affects the transcription of many genes. Moreover the hairpin-like precursor overlapped the neighbouring NAP1 gene. In silico analysis revealed distinct putative functions for the ‘miRNA candidate’, of which majority were related to growth. Hence, we assume that this ‘miRNA candidate’ may get activated during transcription of NAP gene, thereby regulating the expression of many genes involved in developmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91

    Article  PubMed  CAS  Google Scholar 

  • Aravin A, Tuschl T (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579:5830–5840

    Article  PubMed  CAS  Google Scholar 

  • Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5(2):337–350

    Article  PubMed  CAS  Google Scholar 

  • Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20:2911–2917

    Article  PubMed  CAS  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta E, Puigdomenech P, Monfort A (2000) Distribution of microsatellites in relation to coding sequences within the Arabidopsis thaliana genome. Plant Sci 157:97–104

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Tan Z, Zeng G, Peng J (2010) Comprehensive analysis of simple sequence repeats in pre-miRNAs. Mol Biol Evol 27(10):2227–2232

    Article  PubMed  CAS  Google Scholar 

  • Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N et al (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4(4):e5279. doi:10.1371/journal.pone.0005279

    Article  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. doi:10.1093/nar/GKR319

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct argonaute/Piwi family members. Development 135:1201–1214. doi:10.1242/dev.005629

    Article  PubMed  CAS  Google Scholar 

  • Fattash I, Vob B, Reski R, Hess WR, Frank W (2007) Evidence for rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol 7:13

    Article  PubMed  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with special emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Guyomarc H, Sourdile P, Charmet G, Edwards KJ, Bernard M (2002) Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  Google Scholar 

  • Jones RMW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  Google Scholar 

  • Joy N, Prasanth VP, Soniya EV (2011) Microsatellite based analysis of genetic diversity of popular black pepper genotypes in South India. Genetica 139:1033–1043. doi:10.1007/s10709-011-9605-x

    Article  PubMed  Google Scholar 

  • Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, Chua NH, Park CM (2005) microRNA directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94

    Article  PubMed  CAS  Google Scholar 

  • Kin T, Yamada K, Terai G, Okida H, Yoshinari Y, Ono Y, Kojima A, Kimura Y, Komori T, Asai K (2007) fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nucleic Acids Res 35(Database issue): D145–D148

    Google Scholar 

  • Lescot M, Déhais P, Moreau Y, De Moor B, Rouzé P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  PubMed  CAS  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    PubMed  CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  • Nagl W, Jeanjour M, Kling H, Kuhner S, Michels I, Muller T, Stein B (1983) Genome and chromatin organization in higher plants. Biologisches Zentralblatt 102:129–148

    CAS  Google Scholar 

  • Park, Luger (2006) Structure and function of nucleosome assembly proteins. Biochem Cell Biol 84(4):549. doi:10.1139/o06-088

    Article  PubMed  CAS  Google Scholar 

  • Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Salamov A, Solovyev V (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  PubMed  CAS  Google Scholar 

  • Suwabe K, Iketani H, Numone T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Uzunova MI, Ecke W (1999) Abundance, polymorphism and genetic mapping of microsatellites in oilseed rape (Brassica napus L.). Plant Breeding 118:323–326

    Article  CAS  Google Scholar 

  • Yin Z, Li C, Han X, Shen F (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414:60–66

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

  • Zuker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide in RNA biochemistry and biotechnology. In Barciszewski J and Clark BFC (eds.) NATO ASI Series, Kluwer Academic Publishers

Download references

Acknowledgements

The authors thank Department of BioTechnology, Government of India for the financial support and Beijing Genomics Institute (Shenzhen, China) for the de novo transcriptome assembly of black pepper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eppurathu Vasudevan Soniya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOC 35 kb

ESM 2

DOC 161 kb

ESM 3

DOC 201 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joy, N., Soniya, E.V. Identification of an miRNA candidate reflects the possible significance of transcribed microsatellites in the hairpin precursors of black pepper. Funct Integr Genomics 12, 387–395 (2012). https://doi.org/10.1007/s10142-012-0267-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-012-0267-2

Keywords

Navigation