, Volume 11, Issue 3, pp 497-505,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 17 Apr 2011

PR-10, defensin and cold dehydrin genes are among those over expressed in Oxytropis (Fabaceae) species adapted to the arctic

Abstract

In many studied plants, typical responses to cold treatment include up-regulating the hydrophilic COR/LEA genes and down-regulating photosynthesis-related genes, carbohydrate metabolism, GDSL-motif lipase, hormone metabolism and oxidative regulation genes. However, next to nothing is known about gene expression in arctic plants, which are actually adapted to a harsh, cold environment. The molecular mechanisms behind the many specific adaptations of arctic plants, such as slow growth, well-developed root systems and short stature, are not well understood. In this study, we examine whole plantlet transcriptome differences between two arctic and two temperate Oxytropis (Fabaceae) species, grown under their respective controlled environmental conditions. Gene expression differences are analyzed using cDNA library subtraction followed by expressed sequence tags sequencing and annotation. Sequences from a total of nearly 2,000 clones cluster into 121 and 368 unique genes from the arctic and from the temperate plants, respectively. The predominant biological process for genes from the arctic-enriched library is “response to stimulus”. A concurrent overexpression of pathogenesis-related class 10 proteins (PR-10), plant defensin and cold dehydrin genes is a novel feature for species adapted to stressful growth environment. The temperate-enriched genes are involved in photosynthesis, translation and nucleosome assembly. Interestingly, both arctic and temperate-enriched libraries also contain genes involved in ribosome biogenesis and assembly, however of different types. Real-time reverse transcription PCR of cold dehydrin and two PR-10 genes, as well as the light harvesting complex b1 genes demonstrates that the gene expression is dependent on species and growth conditions.