Skip to main content
Log in

Gene Expression Profiling of Coccolith-Bearing Cells and Naked Cells in Haptophyte Pleurochrysis haptonemofera with a cDNA Macroarray System

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Pleurochrysis haptonemofera is a unicellular marine coccolithophorid that has calcified scales, coccoliths, on the cell surface. Some coccolithophorids including P. haptonemofera have a coccolith-bearing stage and a naked stage in their life cycles. To characterize genes involved in the coccolithogenesis, we generated a total of 9550 expressed sequence tags (EST) from a normalized cDNA library that was prepared using both coccolith-bearing cells (C-cells) and naked cells (N-cells), constructed a cDNA macroarray using the EST clones, and then analyzed the gene expression specificity in C-cells and N-cells. When cDNA clones whose expression ratio exceeded 3-fold were selected, as many as 180 clones were identified as C-cell-specific ones, while only 12 were found to be N-cell-specific ones. These clones were sequenced, assembled, and homology-searched against a public nonredundant protein database. As a result, they were grouped into 54 C-cell-specific and 6 N-cell-specific genes, and 59% and 50% of these genes exhibited significant similarity to those of other known proteins, respectively. To assess mRNA expression further, Northern hybridization was performed for 12 of the C-cell-specific genes and one of the N-cell-specific ones. These clones, together with the new cDNA macroarray, will provide a powerful tool for the future genome-wide functional analysis of uncharacterized genes related to the regulation of the calcification and life cycle of coccolithophorids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Asamizu E, Nakamura Y, Sato S, Fukuzawa H, Tabata S (1999) A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. DNA Res 6, 369–373

    Article  PubMed  Google Scholar 

  • Bonaldo MF, Lennon G, Soares MB (1996) Normalization and substitution: two approaches to facilitate gene discovery. Genome Res 6, 791–806

    Article  PubMed  CAS  Google Scholar 

  • Dionisio-Sese ML, Miyachi S (1992) The effect of sodium chloride on carbonic anhydrase activity in marine microalgae. J Phycol 28, 619–624

    Article  CAS  Google Scholar 

  • Fichtinger-Shepman AMJ, Kamerling JP, Vliegenthart JFG (1981) Composition of a methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Carbohydr Res 69, 181–189

    Article  Google Scholar 

  • Fresnel J (1986) Nouvelles observations sur une Coccolithacée rare: Cruciplacolithus neohelis (McIntyre and Bé) Reinhadt (Prymnesiophyceae). Protistologica 22, 193–204

    Google Scholar 

  • Fujiwara S, Kawachi M, Minaka N, Inouye I (2001) Molecular phylogeny of the Haptophyta based on the rbcL gene and sequence variation in the spacer region on the rubisco operon. J Phycol 37, 121–129

    Article  CAS  Google Scholar 

  • Hirokawa H, Fujiwara S, Tsuzuki M (2005) Three types of acidic polysaccharides associated with coccolith of Pleurochrysis haptonemofera: comparison of the biochemical characteristics with those of P. carterae and analysis using fluorescein-isothiocyanate-labeled lectins. Mar Biotechnol 7, 634–644

    Article  PubMed  CAS  Google Scholar 

  • Inouye I, Pienaar RN (1984) New observations on the coccolithophorid Umbilicosphaera sibogae var. foliosa (Prymnesiophyceae) with reference to cell covering, cell structure and flagellar apparatus. Br Phycol J 19, 357–369

    Article  Google Scholar 

  • Kono M, Hayashi N, Samata T (2000) Molecular mechanism of the nacreous formation in Pinctada maxima. Biochem Biochys Res Commun 269, 213–218

    Article  CAS  Google Scholar 

  • Leadbeater BSC (1994) "Cell coverings". In The Haptophyte Algae. Green JC, Leadbeater BSC, eds. (Oxford: Clarendon Press) pp 23–46

    Google Scholar 

  • Lin S, Corstjens PLAM (2002) Molecular cloning and expression of the proliferating cell nuclear antigen gene from the coccolithophorid Pleurochrysis carterae (Haptophyceae). J Phycol 38, 164–173

    Article  Google Scholar 

  • Marsh ME (2003) Regulation of CaCO3 formation in coccolithophores. Comp Biochem and Physiol B 136, 743–754

    Article  CAS  Google Scholar 

  • Marsh ME, Chang DK, King GC (1992) Isolation and characterization of a novel acidic polysaccharide containing tartrate and glyoxylate residues from the mineralized scales of a unicellular coccolithophorid alga Pleurochrysis carterae. J Biol Chem 267, 20507–20512

    PubMed  CAS  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA 93, 9657–9660

    Article  PubMed  CAS  Google Scholar 

  • Nguyen B, Bowers RM, Wahlund TM, Read BA (2005) Suppressive subtractive hybridization of and differences in gene expression content of calcifying and noncalcifying cultures of Emiliania huxleyi strain 1516. Appl Environ Microbiol 71, 2564–2575

    Article  PubMed  CAS  Google Scholar 

  • Nikaido I, Asamizu E, Nakajima M, Nakamura Y, Saga N, Tabata S (2000) Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res 7, 223–227

    Article  PubMed  Google Scholar 

  • Obayashi T, Okegawa T, Sasaki-Sekimoto Y, Shimada H, Masuda T, Asamizu E, Nakamura Y, Shibata D, Tabata S, Takamiya K, Ohta H (2004) Distinctive features of plant organs characterized by global analysis of gene expression in Arabidopsis. DNA Res 11, 11–25

    Article  PubMed  CAS  Google Scholar 

  • Oyama Y, Izumo A, Fujiwara S, Shimonaga T, Nakamura Y, Tsuzuki M (2006) Granule-bound starch synthase cDNA in Chlorella kessleri 11h: cloning and regulation of expression by CO2 concentration. Planta 224, 646–654

    Article  PubMed  CAS  Google Scholar 

  • Quinn P, Bowers RM, Zhang X, Wahlund TM, Fanelli MA, Olszova D, Read BA (2006) cDNA microarrays as a tool for identification of biomineralization proteins in the coccolithophorid Emiliania huxleyi (Haptophyta). Appl Environ Microbiol 72, 5512–5526

    Article  PubMed  CAS  Google Scholar 

  • Quiroga O, González EL (1993) Carbonic anhydrase in the chloroplast of a coccolithophorid (Prymnesiophyceae). J Phycol 29, 321–324

    Article  CAS  Google Scholar 

  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T, Shimada H, Takamiya K, Ohta H, Tabata S (2001) Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res 8, 153–161

    Article  PubMed  CAS  Google Scholar 

  • Soto AR, Zheng H, Shoemaker D, Rodriguez J, Read BA, Wahlund TM (2006) Identification and preliminary characterization of two cDNAs encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi. Appl Environ Microbiol 72, 5500–5511

    Article  PubMed  CAS  Google Scholar 

  • Takahashi J, Fujiwara S, Kikyo M, Hirokawa Y, Tsuzuki M (2002) Discrimination of the cell surface of the coccolithophorid Pleurochrysis haptonemofera from light scattering and fluorescein-isothiocyanate-labeled lectin staining measured by flow cytometry. Mar Biotechnol 4, 94–101

    Article  PubMed  CAS  Google Scholar 

  • van der Wal P, de Jong EW, Westbroek P, de Bruijin WC, Mulder-Stapel AA (1983) Polysaccharide localization, coccolith formation and Golgi dynamics in the coccolithophorid Hymenomonas carterae. J Ultrastr Res 85, 139–158

    Article  Google Scholar 

  • Wahlund TM, Hadaegh AR, Clark R, Nguyen B, Fanelli M, Read BA (2004a) Analysis of expressed sequence tags from calcifying cells of the marine coccolithophorid, Emiliania huxleyi. Mar Biotechnol 6, 278–290

    Article  PubMed  CAS  Google Scholar 

  • Wahlund TM, Zhang X, Read BA (2004b) EST expression profiles from calcifying and non-calcifying cultures of Emiliania huxleyi. Micropaleontol 50 (Suppl), 145–155

    Article  Google Scholar 

  • Westbroek P, Young JR, Linschooten K (1989) Coccolith production (biomineralization) in the marine alga Emiliania huxleyi. J Protozool 36, 368–373

    Google Scholar 

Download references

Acknowledgments

The authors thank Drs. I. Inouye and M. Kawachi of Tsukuba University, Japan, for kindly providing the P. haptonemofera cells and the scanning electron micrographs; Mr. T. Suzuki of the Kazusa DNA Research Institute for the excellent technical support; and Dr. M. Yamamoto of Tokyo University of Pharmacy and Life Sciences, Japan, for the helpful comments. This work was supported by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture, Japan (13640657, 13740463 and 13874112); the Promotion and Mutual Aid Corporation for Private Schools; the Kazusa DNA Research Institute Foundation; and a Sasakawa Scientific Research Grant from The Japan Science Society to Y. H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoko Fujiwara.

Additional information

Shoko Fujiwara and Yasutaka Hirokawa contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, S., Hirokawa, Y., Takatsuka, Y. et al. Gene Expression Profiling of Coccolith-Bearing Cells and Naked Cells in Haptophyte Pleurochrysis haptonemofera with a cDNA Macroarray System. Mar Biotechnol 9, 550–560 (2007). https://doi.org/10.1007/s10126-007-9039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9039-8

Keywords

Navigation