Knowledge and Information Systems

, Volume 14, Issue 3, pp 327–346

Random walk with restart: fast solutions and applications

Regular Paper

DOI: 10.1007/s10115-007-0094-2

Cite this article as:
Tong, H., Faloutsos, C. & Pan, JY. Knowl Inf Syst (2008) 14: 327. doi:10.1007/s10115-007-0094-2


How closely related are two nodes in a graph? How to compute this score quickly, on huge, disk-resident, real graphs? Random walk with restart (RWR) provides a good relevance score between two nodes in a weighted graph, and it has been successfully used in numerous settings, like automatic captioning of images, generalizations to the “connection subgraphs”, personalized PageRank, and many more. However, the straightforward implementations of RWR do not scale for large graphs, requiring either quadratic space and cubic pre-computation time, or slow response time on queries. We propose fast solutions to this problem. The heart of our approach is to exploit two important properties shared by many real graphs: (a) linear correlations and (b) block-wise, community-like structure. We exploit the linearity by using low-rank matrix approximation, and the community structure by graph partitioning, followed by the Sherman–Morrison lemma for matrix inversion. Experimental results on the Corel image and the DBLP dabasets demonstrate that our proposed methods achieve significant savings over the straightforward implementations: they can save several orders of magnitude in pre-computation and storage cost, and they achieve up to 150 × speed up with 90%+ quality preservation.


Relevance score Random walk with restart Graph Mining 

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations