, Volume 11, Issue 2, pp 137-154
Date: 22 Aug 2006

Automatic outlier detection for time series: an application to sensor data

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In this article we consider the problem of detecting unusual values or outliers from time series data where the process by which the data are created is difficult to model. The main consideration is the fact that data closer in time are more correlated to each other than those farther apart. We propose two variations of a method that uses the median from a neighborhood of a data point and a threshold value to compare the difference between the median and the observed data value. Both variations of the method are fast and can be used for data streams that occur in quick succession such as sensor data on an airplane.

Martin Meckesheimer has been a member of the Applied Statistics Group at Phantom Works, Boeing since 2001. He received a Bachelor of Science Degree in Industrial Engineering from the University of Pittsburgh in 1997, and a Master's Degree in Industrial and Systems Engineering from Ecole Centrale Paris in 1999. Martin earned a Doctorate in Industrial Engineering from The Pennsylvania State University in August 2001, as a student of Professor Russell R. Barton and Dr. Timothy W. Simpson. His primary research interests are in the areas of design of experiments and surrogate modeling.
Sabyasachi Basu received his Ph.D. is Statistics from the University of Wisconsin at Madison in 1990. Since his Ph.D., he has worked in both academia and in industry. He has taught and guided Ph.D. students in the Department of Statistics at the Southern Methodist University. He has also worked as a senior marketing statistician at the J. C. Penney Company. Dr. Basu is also an American Society of Quality certified Six Sigma Black Belt. He is currently an Associate Technical Fellow in Statistics and Data Mining at the Boeing Company. In this capacity, he works as a researcher and a technical consultant within Boeing for data mining, statistics and process improvements. He has published more than 20 papers and technical reports. He has also served as journal referee for several journals, organized conferences and been invited to present at conferences.