, Volume 11, Issue 2, pp 217-242
Date: 23 Mar 2006

Inference of abduction theories for handling incompleteness in first-order learning

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In real-life domains, learning systems often have to deal with various kinds of imperfections in data such as noise, incompleteness and inexactness. This problem seriously affects the knowledge discovery process, specifically in the case of traditional Machine Learning approaches that exploit simple or constrained knowledge representations and are based on single inference mechanisms. Indeed, this limits their capability of discovering fundamental knowledge in those situations. In order to broaden the investigation and the applicability of machine learning schemes in such particular situations, it is necessary to move on to more expressive representations which require more complex inference mechanisms. However, the applicability of such new and complex inference mechanisms, such as abductive reasoning, strongly relies on a deep background knowledge about the specific application domain. This work aims at automatically discovering the meta-knowledge needed to abduction inference strategy to complete the incoming information in order to handle cases of missing knowledge.

Floriana Esposito received the Laurea degree in electronic Physics from the University of Bari, Italy, in 1970. Since 1994 is Full Professor of Computer Science at the University of Bari and Dean of the Faculty of Computer Science from 1997 to 2002. She founded and chairs the Laboratory for Knowledge Acquisition and Machine Learning of the Department of Computer Science. Her research activity started in the field of numerical models and statistical pattern recognition. Then her interests moved to the field of Artificial Intelligence and Machine Learning. The current research concerns the logical and algebraic foundations of numerical and symbolic methods in machine learning with the aim of the integration, the computational models of incremental and multistrategy learning, the revision of logical theories, the knowledge discovery in data bases. Application include document classification and understanding, content based document retrieval, map interpretation and Semantic Web. She is author of more than 270 scientific papers and is in the scientific committees of many international scientific Conferences in the field of Artificial Intelligence and Machine Learning. She co-chaired ICML96, MSL98, ECML-PKDD 2003, IEA-AIE 2005, ISMIS 2006.
Stefano Ferilli was born in 1972. After receiving his Laurea degree in Information Science in 1996, he got a Ph.D. in Computer Science at the University of Bari in 2001. Since 2002 he is an Assistant Professor at the Department of Computer Science of the University of Bari. His research interests are centered on Logic and Algebraic Foundations of Machine Learning, Inductive Logic Programming, Theory Revision, Multi-Strategy Learning, Knowledge Representation, Electronic Document Processing and Digital Libraries. He participated in various National and European (ESPRIT and IST) projects concerning these topics, and is a (co-)author of more than 80 papers published on National and International journals, books and conferences/workshops proceedings.
Teresa M.A. Basile got the Laurea degree in Computer Science at the University of Bari, Italy (2001). In March 2005 she discussed a Ph.D. thesis in Computer Science at the University of Bari titled “A Multistrategy Framework for First-Order Rules Learning.” Since April 2005, she is a research at the Computer Science Department of the University of Bari working on methods and techniques of machine learning for the Semantic Web. Her research interests concern the investigation of symbolic machine learning techniques, in particular of the cooperation of different inferences strategies in an incremental learning framework, and their application to document classification and understanding based on their semantic. She is author of about 40 papers published on National and International journals and conferences/workshops proceedings and was/is involved in various National and European projects.
Nicola Di Mauro got the Laurea degree in Computer Science at the University of Bari, Italy. From 2001 he went on making research on machine learning in the Knowledge Acquisition and Machine Learning Laboratory (LACAM) at the Department of Computer Science, University of Bari. In March 2005 he discussed a Ph.D. thesis in Computer Science at the University of Bari titled “First Order Incremental Theory Refinement” which faces the problem of Incremental Learning in ILP. Since January 2005, he is an assistant professor at the Department of Computer Science, University of Bari. His research activities concern Inductive Logic Programming (ILP), Theory Revision and Incremental Learning, Multistrategy Learning, with application to Automatic Document Processing. On such topics HE is author of about 40 scientific papers accepted for presentation and publication on international and national journals and conference proceedings. He took part to the European projects 6th FP IP-507173 VIKEF (Virtual Information and Knowledge Environment Framework) and IST-1999-20882 COLLATE (Collaboratory for Annotation, Indexing and Retrieval of Digitized Historical Archive Materials), and to various national projects co-funded by the Italian Ministry for the University and Scientific Research.