1.

Bao Y, Ishii N (2002) Combining multiple K-nearest neighbor classifiers for text classification by reducts. In: Proceedings of 5th international conference on discovery science. Lecture notes in computer science, vol 2534. pp 340–347

2.

Bao Y, Du X, Ishii N (2003) Improving performance of the K-nearest neighbor classification by GA and tolerant rough sets. Int J Knowl-Based Intell Eng Syst 7:54–61

3.

Bell DA, Guan JW (1998) Computational methods for rough classification and discovery. J Am Soc Inf Sci 49(1):403–414

CrossRef4.

Bell DA, Wang H (2000) A formalism for relevance and its application in feature subset selection. Mach Learn 41:175–195

CrossRef5.

Guan JW, Bell DA (1998) Rough computational methods for information systems. Artif Intell 105:77–103

CrossRef6.

Hong ZQ, Yang JY (1991) Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recogn 24(4):317–324

CrossRef7.

Hu X, Cecone N, Ziarko W (1997) Generation of multiple knowledge from databases based on rough set theory. In: Lin TY, Cercone N (eds) Rough set and data mining. Kluwer, pp 109–121

8.

Kohavi R, Frasca B (1994) Useful feature subsets and rough set reducts. Int Workshop Rough Sets Soft Comput (RSSC)

9.

Lin TY, Cercone N (1997) Rough set and data mining. Kluwer, Dordrecht

10.

Mitchell MT (1997) Machine learning. McGraw Hill. Copublished by the MIT Press

11.

Nguyen SH, Skowron A, Synak P et al (1997) Knowledge discovery in databases: rough set approach. Proceedings of The 7th international fuzzy systems association world congress, IFSA’97, Prague, Czech Republic, vol II. pp 204–209

12.

Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356

MathSciNetCrossRef13.

Pawlak Z (1991) Rough sets: theoretical aspects data analysis. Kluwer, Dordrecht

14.

Polkowski L, Skowron A (eds) (1998) Rough sets in knowledge discovery, vols 1, 2. Physica-Verlag, Heidelberg

15.

Polkowski L, Tsumoto S, Lin TY (eds) (2000) Rough set methods and applications, new developments in knowledge discovery in information systems. Physica-Verlag

16.

Rish I (2001) An empirical study of the naïve Bayes classifier. In: IJCAI-01 workshop on empirical methods in artificial intelligence

17.

Skowron A, Rauszer C (1992) The discernibility matrices and functions in information systems. In: Slowinski R (ed) Intelligent decision support. Kluwer, Boston, MA, pp 331–362

18.

Tanaka H, Maeda Y (1998), Reduction methods for medical data. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery, vol 2. pp 295–306

19.

Wróblewski J (1995) Finding minimal reducts using genetic algorithms. In: Proceedings of the 2nd annual joint conference on information sciences. pp 186–189

20.

Wróblewski J (1998) Genetic algorithms in decomposition and classification problem. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery, vol 2. Physica-Verlag, Heidelberg, pp 471–487

21.

Wu QX, Bell DA (2001) Problems and solutions on Markov localization for mobile robot. Proceedings of international conference on computational intelligence for modelling & control, USA, pp 543–551

22.

Yao YY, Wong SKM, Lin TY (1997) A review of rough set models. In: Lin TY, Cercone N (eds) Rough sets and data mining: analysis for imprecise data. Kluwer, Boston, MA, and London, pp 25–60

23.

Zhong N, Dong J (2001) Using rough sets with heuristics for feature selection. J Intell Inf Syst 16:199–214

CrossRef24.

Zupan B, Bohanec M, Demsar J et al (1998) Feature transformation by function decomposition. IEEE Intell Syst 13:38–43

CrossRef