Acta Mathematica Sinica

, Volume 16, Issue 1, pp 103–112

The Existence of BIB Designs

Authors

    • Institute of MathematicsNorthern Jiaotong University
ORIGINAL ARTICLES

DOI: 10.1007/s101149900030

Cite this article as:
Chang, Y. Acta Math Sinica (2000) 16: 103. doi:10.1007/s101149900030
  • 31 Views

Abstract

Given any positive integers k≥ 3 and λ, let c(k, λ) denote the smallest integer such that vB(k, λ) for every integer vc(k, λ) that satisfies the congruences λv(v− 1) ≡ 0(mod k(k− 1)) and λ(v− 1) ≡ 0(mod k− 1). In this article we make an improvement on the bound of c(k, λ) provided by Chang in [4] and prove that \( c{\left( {k,\lambda } \right)} \leqslant \exp {\left\{ {k^{{3k^{6} }} } \right\}} \). In particular, \( c{\left( {k,1} \right)} \leqslant \exp {\left\{ {k^{{k^{2} }} } \right\}} \).

Keywords

Wilson’s theoremBalanced incomplete block designPBD-closed

1991 MR Subject Classification

05B

Copyright information

© Springer-Verlag Berlin Heidelberg 1999