Acta Mathematica Sinica

, Volume 18, Issue 3, pp 597–604

Chen's Theorem with Small Primes

  • Ying Chun Cai
ORIGINAL ARTICLES

DOI: 10.1007/s101140200168

Cite this article as:
Cai, Y.C. Acta Math Sinica (2002) 18: 597. doi:10.1007/s101140200168

Abstract

Let N be a sufficiently large even integer. In this paper it is proved that the equation
$$ \begin{array}{*{20}c} {{N = p + P_{2} ,}} & {{p \leqslant N^{{0.95}} ,}} \\ \end{array} $$
is solvable, where p denotes a prime and P2 denotes an almost prime with at most two prime factors.

Keywords

Chen's theoremSieveMean value theorem

MR (2000) Subject Classification

11N36

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ying Chun Cai
    • 1
  1. 1.Department of MathematicsShanghai UniversityShanghaiP. R. China