Acta Mathematica Sinica, English Series

, Volume 25, Issue 3, pp 435–444

On the weighted elliptic problems involving multi-singular potentials and multi-critical exponents

Authors

    • Department of MathematicsSouth-Central University for Nationalities
Article

DOI: 10.1007/s10114-008-6450-7

Cite this article as:
Kang, D.S. Acta. Math. Sin.-English Ser. (2009) 25: 435. doi:10.1007/s10114-008-6450-7

Abstract

Suppose Ω ⊂ ℝN(N ≥ 3) is a smooth bounded domain, \( \xi _i \in \Omega , 0 < a_i < \sqrt {\bar \mu } , \bar \mu : = \left( {\frac{{N - 2}} {2}} \right)^2 ,0 \leqslant \mu _i < \left( {\sqrt {\bar \mu } - a_i } \right)^2 , a_i < b_i < a_i + 1 \) and \( p_i : = \frac{{2N}} {{N - 2(1 + a_i - b_i )}} \) are the weighted critical Hardy-Sobolev exponents, i = 1, 2,…, k, k ≥ 2. We deal with the conditions that ensure the existence of positive solutions to the multi-singular and multi-critical elliptic problem
$$ \sum\limits_{i = 1}^k {\left( { - div(|x - \xi _i |^{ - 2a_i } \nabla u) - \frac{{\mu _i u}} {{|x - \xi _i |^{2(1 + a_i )} }} - \frac{{u^{p_i - 1} }} {{|x - \xi _i |^{b_i p_i } }}} \right)} = 0 $$
with Dirichlet boundary condition, which involves the weighted Hardy inequality and the weighted Hardy-Sobolev inequality. The results depend crucially on the parameters ai, bi and μi, i = 1, 2,…, k.

Keywords

multi-singularmulti-criticalweighted elliptic problemweighted Hardy-Sobolev exponent

MR(2000) Subject Classification

35B3335J60

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH 2009