Acta Mathematica Sinica

, Volume 19, Issue 2, pp 405–412

Convergence of Newton's Method and Uniqueness of the Solution of Equations in Banach Spaces II

ORIGINAL ARTICLES

DOI: 10.1007/s10114-002-0238-y

Cite this article as:
Wang, X.H. & Li, C. Acta Math Sinica (2003) 19: 405. doi:10.1007/s10114-002-0238-y

Abstract

Some results on convergence of Newton's method in Banach spaces are established under the assumption that the derivative of the operators satisfies the radius or center Lipschitz condition with a weak L average.

Keywords

Nonlinear operator equationNewton's methodLipschitz condition with L averageConvergence ball

MR (2000) Subject Classification

65H10

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang UniversityHangzhou 310028P. R. China
  2. 2.Department of MathematicsWenzhou UniversityWhenzhou 325027P. R. China
  3. 3.Department of MathematicsZhejiang UniversityHangzhou 310027P. R. China
  4. 4.Academy of Mathematics and System SciencesChinese Academy of SciencesBeijing 100080P. R. China