# On convex relaxations for quadratically constrained quadratic programming

## Authors

- First Online:

- Received:
- Accepted:

DOI: 10.1007/s10107-012-0602-3

- Cite this article as:
- Anstreicher, K.M. Math. Program. (2012) 136: 233. doi:10.1007/s10107-012-0602-3

- 25 Citations
- 1k Views

## Abstract

We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let \(\mathcal{F }\) denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on \(\mathcal{F }\) is dominated by an alternative methodology based on convexifying the range of the quadratic form \(\genfrac(){0.0pt}{}{1}{x}\genfrac(){0.0pt}{}{1}{x}^T\) for \(x\in \mathcal{F }\). We next show that the use of “\(\alpha \)BB” underestimators as computable estimates of convex lower envelopes is dominated by a relaxation of the convex hull of the quadratic form that imposes semidefiniteness and linear constraints on diagonal terms. Finally, we show that the use of a large class of D.C. (“difference of convex”) underestimators is dominated by a relaxation that combines semidefiniteness with RLT constraints.