Skip to main content
Log in

An augmented Lagrangian approach for sparse principal component analysis

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To alleviate this drawback, various sparse PCA approaches were proposed in the literature (Cadima and Jolliffe in J Appl Stat 22:203–214, 1995; d’Aspremont et al. in J Mach Learn Res 9:1269–1294, 2008; d’Aspremont et al. SIAM Rev 49:434–448, 2007; Jolliffe in J Appl Stat 22:29–35, 1995; Journée et al. in J Mach Learn Res 11:517–553, 2010; Jolliffe et al. in J Comput Graph Stat 12:531–547, 2003; Moghaddam et al. in Advances in neural information processing systems 18:915–922, MIT Press, Cambridge, 2006; Shen and Huang in J Multivar Anal 99(6):1015–1034, 2008; Zou et al. in J Comput Graph Stat 15(2):265–286, 2006). Despite success in achieving sparsity, some important properties enjoyed by the standard PCA are lost in these methods such as uncorrelation of PCs and orthogonality of loading vectors. Also, the total explained variance that they attempt to maximize can be too optimistic. In this paper we propose a new formulation for sparse PCA, aiming at finding sparse and nearly uncorrelated PCs with orthogonal loading vectors while explaining as much of the total variance as possible. We also develop a novel augmented Lagrangian method for solving a class of nonsmooth constrained optimization problems, which is well suited for our formulation of sparse PCA. We show that it converges to a feasible point, and moreover under some regularity assumptions, it converges to a stationary point. Additionally, we propose two nonmonotone gradient methods for solving the augmented Lagrangian subproblems, and establish their global and local convergence. Finally, we compare our sparse PCA approach with several existing methods on synthetic (Zou et al. in J Comput Graph Stat 15(2):265–286, 2006), Pitprops (Jeffers in Appl Stat 16:225–236, 1967), and gene expression data (Chin et al in Cancer Cell 10:529C–541C, 2006), respectively. The computational results demonstrate that the sparse PCs produced by our approach substantially outperform those by other methods in terms of total explained variance, correlation of PCs, and orthogonality of loading vectors. Moreover, the experiments on random data show that our method is capable of solving large-scale problems within a reasonable amount of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alter O., Brown P., Botstein D.: Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. 97, 10101–10106 (2000)

    Article  Google Scholar 

  2. Barzilai J., Borwein J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck A., Teboulle M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999)

  5. Birgin E.G., Martínez J.M., Raydan M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burer S., Monteiro R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. Ser. B 95, 329–357 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cadima J., Jolliffe I.: Loadings and correlations in the interpretation of principal components. J. Appl. Stat. 22, 203–214 (1995)

    Article  MathSciNet  Google Scholar 

  8. Chin, K., Devries, S., Fridlyand, J., Spellman, P., Roydasgupta, R., Kuo, W.-L., Lapuk, A., Neve, R., Qian, Z., Ryder, T.: Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10, 529C–541C (2006)

    Article  Google Scholar 

  9. d’Aspremont A., Bach F.R., El Ghaoui L.: Optimal solutions for sparse principal component analysis. J. Mach. Learn. Res. 9, 1269–1294 (2008)

    MathSciNet  MATH  Google Scholar 

  10. d’Aspremont A., El Ghaoui L., Jordan M.I., Lanckriet G.R.G.: A direct formulation for sparse PCA using semidefinite programming. SIAM Rev. 49, 434–448 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hancock P., Burton A., Bruce V.: Face processing: human perception and principal components analysis. Memory Cogn. 24, 26–40 (1996)

    Article  Google Scholar 

  12. Hastie T., Tibshirani R., Eisen M., Brown P., Ross D., Scherf U., Weinstein J., Alizadeh A., Staudt L., Botstein D.: ́ene Shavingás a method for identifying distinct sets of genes with similar expression patterns. Genome Biol. 1, 1–21 (2000)

    Article  Google Scholar 

  13. Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, NewYork (2001)

    MATH  Google Scholar 

  14. Helmke U., Moore J.B.: Optimization and Dynamical Systems. Springer, London and New York (1994)

    Book  Google Scholar 

  15. Hiriart-Urruty J.B., Lemaréchal C.: Convex Analysis and Minimization Algorithms I. Comprehensive Study in Mathematics, vol. 305. Springer, New York (1993)

    Google Scholar 

  16. Jeffers J.: Two case studies in the application of principal component. Appl. Stat. 16, 225–236 (1967)

    Article  Google Scholar 

  17. Jolliffe I.: Rotation of principal components: choice of normalization constraints. J. Appl. Stat. 22, 29–35 (1995)

    Article  MathSciNet  Google Scholar 

  18. Journée M., Nesterov Yu., Richtárik P., Sepulchre R.: Generalized power method for sparse principal component analysis. J. Mach. Learn. Res. 11, 517–553 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Jolliffe I.T., Trendafilov N.T., Uddin M.L.: A modified principal component technique based on the Lasso. J. Comput. Graph. Stat. 12, 531–547 (2003)

    Article  MathSciNet  Google Scholar 

  20. Lu, Z., Zhang Y.: An Augmented Lagrangian Approach for Sparse Principal Component Analysis. Technical report, Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada, July (2009)

  21. Moghaddam B., Weiss Y., Avidan S.: Spectral bounds for sparse PCA: exact and greedy algorithms. In: Weiss, Y., Schölkopf, B., Platt, J. (eds) Advances in Neural Information Processing Systems 18, pp. 915–922. MIT Press, Cambridge (2006)

    Google Scholar 

  22. Monteiro, R.D.C.: Private communication (2009)

  23. Nesterov, Y.E.: Gradient methods for minimizing composite objective functions. CORE Discussion paper 2007/76, September 2007

  24. Robinson S.M.: Stability theory for systems of inequalities, Part 2: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Robinson S.M.: Local structure of feasible sets in nonlinear programming, Part I: regularity. In: Pereira, V., Reinoza, A. (eds) Numerical Methods Lecture Notes in Mathematics vol. 1005, Springer, Berlin (1983)

    Google Scholar 

  26. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  27. Ruszczyński A.: Nonlinear Optimization. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  28. Shen H., Huang J.Z.: Sparse principal component analysis via regularized low rank matrix approximation. J. Multivar. Anal. 99(6), 1015–1034 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tseng P., Yun S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117, 387–423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wright S.J., Nowak R., Figueiredo M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(3), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  31. Zou H., Hastie T., Tibshirani R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaosong Lu.

Additional information

This work was supported in part by NSERC Discovery Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Z., Zhang, Y. An augmented Lagrangian approach for sparse principal component analysis. Math. Program. 135, 149–193 (2012). https://doi.org/10.1007/s10107-011-0452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0452-4

Keywords

Mathematics Subject Classification (2000)

Navigation