1.

Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Technical report MSRR 348, Carnegie Mellon University (1974)

2.

Balas, E.: Disjunctive programming: cutting planes from logical conditions. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M.(eds.), Nonlinear Programming 2, Academics Press, New York, 279–312 (1975)

3.

Balas E. (1979). Disjunctive programming.

*Ann Discr. Math.* 5: 3–51

MATHMathSciNetCrossRef4.

Balas E., Ceria S. and Cornuèjols G. (1993). A lift-and-project cutting plane algorithm for mixed 0–1 programs.

*Math. Programm.* 58: 295–324

CrossRef5.

Balas E., Ceria S. and Cornuèjols G. (1993). Solving mixed 0–1 programs by a lift-and-project method. *SODA* 1993: 232–242

6.

Balas E., Ceria S. and Cornuèjols G. (1996). Mixed 0–1 programming by lift-and-project in a branch-and-cut framework.

*Manage. Sci.* 42: 1229–1246

MATH7.

Balas, E., Perregaard, M.: Generating cuts from multiple-tem disjunctions. In: Aardal, K., Gerards, B. (eds.) Proceedings of IPCO VIII. Lecture Notes in Computer Science 2081, 348–360 (2001)

8.

Blair C.E. and Jeroslow R.G. (1978). A converse for disjunctive constraints.

*J. Optim. Theory Appl.* 25: 195–206

MATHCrossRefMathSciNet9.

Ceria, S., Soares, J.: Disjunctive cut generation for mixed 0–1 programs: duality and lifting. Working Paper, Graduate School of Business, Columbia University (1997)

10.

Dentcheva D. and Ruszczyński A. (2003). Optimization with stochastic dominance constraints.

*SIAM J. Optim.* 14: 548–566

MATHCrossRefMathSciNet11.

Dentcheva D. and Ruszczyński A. (2004). Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints.

*Math. Programm.* 99: 329–350

MATHCrossRef12.

Dentcheva D. and Ruszczyński A. (2004). Convexification of stochastic ordering. *C. R. Acad. Bulgare Sci.* 57(4): 7–14

13.

Dentcheva D. and Ruszczyński A. (2004). Semi-infinite probabilistic optimization: first order stochastic dominance constraints.

*Optimization* 53: 583–601

MATHCrossRefMathSciNet14.

Dentcheva D. and Ruszczyński A. (2006). Portfolio optimization with first order stochastic dominance constraints.

*J. Banking Financ* 30(2): 433–451

CrossRef15.

Fishburn P.C. (1970). Utility Theory for Decision Making. Wiley, New York

MATH16.

Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modelling Language for Mathematical Programming. The Scientific Press (1993)

17.

Hadar J. and Russell W. (1969). Rules for ordering uncertain prospects. *Am. Econ. Rev.* 59: 25–34

18.

Hanoch G. and Levy H. (1969). The efficiency analysis of choices involving risk.

*Rev. Econ. Stud.* 36: 335–346

MATHCrossRef19.

Klatte D. and Henrion R. (1998). Regularity and stability in nonlinear semi-infinite optimization.

*Nonconvex optim. Appl.* 25: 69–102

MathSciNet20.

ILOG CPLEX: CPLEX 9.0 Users Manual and Reference Manual, ILOG CPLEX Division, Incline Village, NV (2005)

21.

Klein Haneveld, W.K.: Duality in Stochastic Linear and Dynamic Programming. Lecture Notes in Economics and Mathematical Systems, Vol. 274. Springer, New York (1986)

22.

Klein Haneveld W.K. and VanDer Vlerk M.H. (2006). Integrated chance constraints: reduced forms and an algorithm.

*Comput. Manage. Sci.* 3(4): 245–269

MATHCrossRefMathSciNet23.

Lehmann E. (1955). Ordered families of distributions.

*Ann. Math. Stat.* 26: 399–419

CrossRefMathSciNetMATH24.

Levy H. (1992). Stochastic dominance and expected utility: survey and analysis.

*Manage Sci.* 38: 555–593

MATHCrossRef25.

Mann H.B. and Whitney D.R. (1947). On a test of whether one of two random variables is stochastically larger than the other.

*Ann. Math. Stat.* 18: 50–60

CrossRefMathSciNetMATH26.

Markowitz H.M. (1952). Portfolio Selection.

*J. Finan.* 7: 77–91

CrossRef27.

Markowitz H.M. (1959). Portfolio Selection. Wiley, New York

28.

Noyan N., Rudolf G. and Ruszczyński A. (2005). Relaxations of linear programming problems with first order stochastic dominance constraints. *Oper. Res. Lett.* 103: 784–797

29.

Noyan, N.: Optimization with first order stochastic dominance constraint. Doctoral Dissertation, Graduate School of New Brunswick, Rutgers, The State University of New Jersey, Piscataway, USA (2006)

30.

Ogryczak W. and Ruszczyński A. (1999). From stochastic dominance to mean-risk models: semideviations as risk measures.

*Eur. J. Oper. Res.* 116: 33–50

MATHCrossRef31.

Ogryczak W. and Ruszczyński A. (2001). Dual stochastic dominance and related mean-risk models.

*SIAM J. Optim.* 13: 60–78

CrossRef31.

Perregaard, M.: Generating disjunctive cuts for mixed integer programs. Doctoral Dissertation, Graduate School of Industrial Administration, Schenley Park, Pittsburgh, Carnegie Mellon University (2003)

33.

Quirk J.P. and Saposnik R. (1962). Admissibility and measurable utility functions.

*Rev. Econ. Stud.* 29: 140–146

CrossRef34.

Rockafellar R.T. and Uryasev S. (2000). Optimization of conditional value at risk. *J. Risk* 2: 21–41

35.

Rothschild M. and Stiglitz J.E. (1969). Increasing risk: I. A definition.

*J. Econom. Theory* 2: 225–243

CrossRefMathSciNet36.

Rudolf, G., Ruszczyński, A.: A dual approach to linear stochastic optimization problems with second order dominance constraints (in preparation) (2006)

37.

Ruszczyński A. and Vanderbei R.J. (2003). Frontiers of stochastically nondominated portfolios.

*Econometrica* 71: 1287–1297

CrossRefMathSciNetMATH38.

Whitmore G.A. and Findlay M.C. (1978). Stochastic dominance: an approach to decision-making under risk. D.C.Heath, Lexington