Skip to main content

Advertisement

Log in

Five-day, low-level laser therapy for sports-related lower extremity periostitis in adult men: a randomized, controlled trial

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Periostitis in the lower leg caused by overexercise is a universal problem in athletes and runners. The purpose of this study was to observe the functional improvement of the lower limbs upon rehabilitation low-level laser therapy (LLLT). All medical data were gathered from enrolled adults with sports-related lower leg pain. A total of 54 patients underwent triple-phase bone scans using skeletal nuclear scintigraphy, which confirmed periostitis in their lower limbs. The patients were then randomly divided into two groups: one group received laser therapy (N = 29) and the other group (N = 25) received an equivalent placebo treatment (a drug or physical therapy). Treatment protocol commenced with rehabilitation intervention and LLLT was performed three times daily for 5 days at a dosage of 1.4 J/cm2. A Likert-type pain scale was used to evaluate the severity of pain. Balance function, including postural stability testing (PST) and limits of stability (LOS), was also performed to evaluate the function outcome. Patients experienced a significant improvement in pain by day 2 or day 5 after starting LLLT, but here was no significant difference in pain scale between the measurements before (baseline) and after LLLT. Comparing the PST, the group differences of dynamic vs. static testings ranged from −18.54 to −50.22 (compared 12, 8, 4, 3, 2, 1 to 0, all p < 0.0001), and the PST after LLLT were 3.73 units (p = 0.0258) lower than those of before LLLT. Comparing the LOS, the group differences of dynamic vs. static testing were similar to those in PST, and the relationship between LOS and groups only varied with the direction control during dynamic testing in direction at backward/right vs. right (p < 0.0001). LLLT had a positive effect on proprioception in patients with lower limb periostitis. Larger, better controlled studies are needed to determine what specific effects LLLT has on the function of proprioception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gotliv AA (1959) Periostites due to over-strain in military personnel. Voen Med Zh 10:68–69

    CAS  PubMed  Google Scholar 

  2. Ivanova LA (1970) Diagnosis and expertise in “march periostitis”. Voen Med Zh 12:30–32

    CAS  PubMed  Google Scholar 

  3. Staff PH, Nilsson S (1980) Tendoperiostitis in the lateral femoral condyle in long-distance runners. Br J Sports Med 14:38–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Renstrom P, Johnson RJ (1985) Overuse injuries in sports. A review. Sports Med 2:316–333

    Article  CAS  PubMed  Google Scholar 

  5. Kelm J, Ahlhelm F, Pitsch W, Kirn-Jünemann U, Engel C, Kohn D, Regitz T (2003) Sports injuries, sports damages and diseases of world class athletes practicing modern pentathlon. Sportverletz Sportschaden 17:32–38

    Article  CAS  PubMed  Google Scholar 

  6. Reshef N, Guelich DR (2012) Medial tibial stress syndrome. Clin Sport Med 31:273–290

    Article  Google Scholar 

  7. Bates P (1985) Shin splints—a literature review. Br J Sports Med 19:132–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Batt ME (1995) Shin splints—a review of terminology. Clin J Sport Med 5:53–57

    Article  CAS  PubMed  Google Scholar 

  9. D'Ambrosia RD, Zelis RF, Chuinard RG, Wilmore J (1977) Interstitial pressure measurements in the anterior and posterior compartments in athletes with shin splints. Am J Sports Med 5:127–131

    Article  PubMed  Google Scholar 

  10. Gerow G, Matthews B, Jahn W, Gerow R (1993) Compartment syndrome and shin splints of the lower leg. J Manipulative Physiol Ther 16:245–252

    CAS  PubMed  Google Scholar 

  11. Cetinus E, Uzel M, Bilgiç E, Karaoguz A, Herdem M (2004) Exercise induced compartment syndrome in a professional footballer. Br J Sports Med 38:227–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tweed JL, Avil SJ, Campbell JA, Barnes MR (2008) Etiologic factors in the development of medial tibial stress syndrome: a review of the literature. J Am Podiatr Med Assoc 98:107–111

    Article  PubMed  Google Scholar 

  13. Nguyen JT, Peterson JS, Biswal S, Beaulieu CF, Fredericson M (2008) Stress-related injuries around the lesser trochanter in long-distance runners. AJR Am J Roentgenol 190:1616–1620

    Article  PubMed  Google Scholar 

  14. Seitz JP, Unguez CE, Corbus HF, Wooten WW (1995) SPECT of the cervical spine in the evaluation of neck pain after trauma. Clin Nucl Med 20:667–673

    Article  CAS  PubMed  Google Scholar 

  15. Milgrom C, Giladi M, Stein M, Kashtan H, Margulies J, Chisin R, Steinberg R, Swissa A, Aharonson Z (1986) Medial tibial pain. A prospective study of its cause among military recruits. Clin Orthop Relat Res 213:167–171

    PubMed  Google Scholar 

  16. Mattila KT, Komu ME, Dahlstrom S, Koskinen SK, Heikkila J (1999) Medial tibial pain: a dynamic contrast-enhanced MRI study. Magn Reson Imaging 17:947–954

    Article  CAS  PubMed  Google Scholar 

  17. Allen MJ, O'Dwyer FG, Barnes MR, Belton IP, Finlay DB (1995) The value of 99Tcm-MDP bone scans in young patients with exercise-induced lower leg pain. Nucl Med Commun 16:88–91

    Article  CAS  PubMed  Google Scholar 

  18. Festen JJ, Kuipers FC, Schaars AH (1985) Multifocal recurrent periostitis responsive to colchicine. Scand J Rheumatol 14:8–14

    Article  CAS  PubMed  Google Scholar 

  19. Lirani-Galvão AP, Lazaretti-Castro M (2010) Physical approach for prevention and treatment of osteoporosis. Arq Bras Endocrinol Metabol 54:171–178

    Article  PubMed  Google Scholar 

  20. Vescovi P, Nammour S (2010) Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ) therapy. A critical review. Minerva Stomatol 59(181–203):204–213

    Google Scholar 

  21. Brosseau L, Robinson V, Wells G, Debie R, Gam A, Harman K, Morin M, Shea B, Tugwell P (2007) WITHDRAWN: low level laser therapy (classes III) for treating osteoarthritis. Cochrane Database Syst Rev 1:CD002046

    PubMed  Google Scholar 

  22. Shomina SA, Bogatov VV, Chervinets VM (2005) [Clinical–microbiological evaluation of the efficacy of combined use of chitosan, low intensity laser radiation and photosensitizer in treatment of patients with acute suppurative maxillofacial periostitis]. Stomatologiia (Mosk) 84:23–26

    CAS  Google Scholar 

  23. Ahn BC, Kim HJ, Lee SW, Yoo J, Choi JK, Lee J (2009) New quantitative method for bone tracer uptake of temporomandibular joint using Tc-99 m MDP skull SPECT. Ann Nucl Med 23:651–656

    Article  PubMed  Google Scholar 

  24. Ferrante M, Petrini M, Trentini P, Perfetti G, Spoto G (2013) Effect of low-level laser therapy after extraction of impacted lower third molars. Lasers Med Sci 28:845–849

    Article  PubMed  Google Scholar 

  25. Khullar SM, Brodin P, Barkvoll P, Haanaes HR (1996) Preliminary study of low-level laser for treatment of long-standing sensory aberrations in the inferior alveolar nerve. J Oral Maxillofac Surg 54:2–8

    Article  CAS  PubMed  Google Scholar 

  26. Khullar SM, Emami B, Westermark A, Haanaes HR (1996) Effect of low-level laser treatment on neurosensory deficits subsequent to sagittal split ramus osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 82:132–138

    Article  CAS  PubMed  Google Scholar 

  27. Forrester DM, Kirkpatrick J (1976) Periostitis and pseudoperiostitis. Radiology 118:597–601

    CAS  PubMed  Google Scholar 

  28. Ninomiya T, Hosoya A, Nakamura H, Sano K, Nishisaka T, Ozawa H (2007) Increase of bone volume by a nanosecond pulsed laser irradiation is caused by a decreased osteoclast number and an activated osteoblasts. Bone 40:140–148

    Article  PubMed  Google Scholar 

  29. Fukuoka H, Daigo Y, Enoki N, Taniguchi K, Sato H (2011) Influence of carbon dioxide laser irradiation on the healing process of extraction sockets. Acta Odontol Scand 69:33–40

    Article  PubMed  Google Scholar 

  30. Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291

    Article  CAS  PubMed  Google Scholar 

  31. Sun X, Zhu X, Xu C, Ye N, Zhu H (2001) Effects of low energy laser on tooth movement and remodeling of alveolar bone in rabbits. Hua Xi Kou Qiang Yi Xue Za Zhi 19:290–293

    CAS  PubMed  Google Scholar 

  32. Garavello-Freitas I, Baranauskas V, Joazeiro PP, Padovani CR, Dal Pai-Silva M, da Cruz-Höfling MA (2003) Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochem Photobiol B 70:81–89

    Article  CAS  PubMed  Google Scholar 

  33. Nicola RA, Jorgetti V, Rigau J, Pacheco MT, dos Reis LM, Zângaro RA (2003) Effect of low-power GaAlAs laser (660 nm) on bone structure and cell activity: an experimental animal study. Lasers Med Sci 18:89–94

    Article  PubMed  Google Scholar 

  34. Renno AC, de Moura FM, dos Santos NS, Tirico RP, Bossini PS, Parizotto NA (2006) Effects of 830-nm laser, used in two doses, on biomechanical properties of osteopenic rat femora. Photomed Laser Surg 24:202–206

    Article  PubMed  Google Scholar 

  35. Renno AC, de Moura FM, dos Santos NS, Tirico RP, Bossini PS, Parizotto NA (2006) Effects of 830-nm laser light on preventing bone loss after ovariectomy. Photomed Laser Surg 24:642–645

    Article  PubMed  Google Scholar 

  36. Xu M, Deng T, Mo F, Deng B, Lam W, Deng P, Zhang X, Liu S (2009) Low-intensity pulsed laser irradiation affects RANKL and OPG mRNA expression in rat calvarial cells. Photomed Laser Surg 27:309–315

    Article  CAS  PubMed  Google Scholar 

  37. Habib FA, Gama SK, Ramalho LM, Cangussú MC, Santos Neto FP, Lacerda JA, Araújo TM, Pinheiro AL (2010) Laser-induced alveolar bone changes during orthodontic movement: a histological study on rodents. Photomed Laser Surg 28:823–830

    Article  CAS  PubMed  Google Scholar 

  38. Pires-Oliveira DA, Oliveira RF, Amadei SU, Pacheco-Soares C, Rocha RF (2010) Laser 904 nm action on bone repair in rats with osteoporosis. Osteoporos Int 21:2109–2114

    Article  CAS  PubMed  Google Scholar 

  39. Bahcall J, Howard P, Miserendino L, Walia H (1992) Preliminary investigation of the histological effects of laser endodontic treatment on the periradicular tissues in dogs. J Endod 18:47–51

    Article  CAS  PubMed  Google Scholar 

  40. Barushka O, Yaakobi T, Oron U (1995) Effect of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone 16:47–55

    CAS  PubMed  Google Scholar 

  41. Saad A, El Yamany M, Abbas O, Yehia M (2010) Possible role of low level laser therapy on bone turnover in ovariectomized rats. Endocr Regul 44:155–163

    Article  CAS  PubMed  Google Scholar 

  42. Altan BA, Sokucu O, Ozkut MM, Inan S (2012) Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. Lasers Med Sci 27:131–140

    Article  PubMed  Google Scholar 

  43. Marquezan M, Bolognese AM, Araújo MT (2010) Effects of two low-intensity laser therapy protocols on experimental tooth movement. Photomed Laser Surg 28:757–762

    Article  PubMed  Google Scholar 

  44. Biguetti CC, Filho EJ, de Andrade HL, Caviquioli G, Moreschi E, Comparin E, Matsumoto MA (2012) Effect of low-level laser therapy on intramembranous and endochondral autogenous bone grafts healing. Microsc Res Tech 75:1237–1244

    Article  PubMed  Google Scholar 

  45. Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41:291–297

    Article  PubMed  Google Scholar 

  46. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166

    Article  CAS  PubMed  Google Scholar 

  47. Renno AC, McDonnell PA, Crovace MC, Zanotto ED, Laakso L (2010) Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds. Photomed Laser Surg 28:131–133

    Article  CAS  PubMed  Google Scholar 

  48. Kubota K, Wakabayashi K, Matsuoka T (2003) Proteome analysis of secreted proteins during osteoclast differentiation using two different methods: two-dimensional electrophoresis and isotope-coded affinity tags analysis with two-dimensional chromatography. Proteomics 3:616–626

    Article  CAS  PubMed  Google Scholar 

  49. Aihara N, Yamaguchi M, Kasai K (2006) Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci 21:24–33

    Article  PubMed  Google Scholar 

  50. Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K (2008) Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res 11:143–155

    Article  CAS  PubMed  Google Scholar 

  51. Shimizu N, Mayahara K, Kiyosaki T, Yamaguchi A, Ozawa Y, Abiko Y (2007) Low-intensity laser irradiation stimulates bone nodule formation via insulin-like growth factor-I expression in rat calvarial cells. Lasers Surg Med 39:551–559

    Article  PubMed  Google Scholar 

  52. Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, Kasai K (2010) Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. Eur J Orthod 32:131–139

    Article  PubMed  Google Scholar 

  53. Lee JH, Heo SJ, Koak JY, Kim SK, Lee SJ, Lee SH (2008) Cellular responses on anodized titanium discs after laser irradiation. Lasers Surg Med 40:738–742

    Article  PubMed  Google Scholar 

  54. Kim IS, Cho TH, Kim K, Weber FE, Hwang SJ (2010) High power-pulsed Nd:YAG laser as a new stimulus to induce BMP-2 expression in MC3T3-E1 osteoblasts. Lasers Surg Med 42:510–518

    Article  PubMed  Google Scholar 

  55. Hirata S, Kitamura C, Fukushima H, Nakamichi I, Abiko Y, Terashita M, Jimi E (2010) Low-level laser irradiation enhances BMP-induced osteoblast differentiation by stimulating the BMP/Smad signaling pathway. J Cell Biochem 111:1445–1452

    Article  CAS  PubMed  Google Scholar 

  56. Fujimoto K, Kiyosaki T, Mitsui N, Mayahara K, Omasa S, Suzuki N, Shimizu N (2010) Low-intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med 42:519–526

    Article  PubMed  Google Scholar 

  57. Chellini F, Sassoli C, Nosi D, Deledda C, Tonelli P, Zecchi-Orlandini S, Formigli L, Giannelli M (2010) Low pulse energy Nd:YAG laser irradiation exerts a biostimulative effect on different cells of the oral microenvironment: “an in vitro study”. Lasers Surg Med 42:527–539

    Article  PubMed  Google Scholar 

  58. Hudson DE, Hudson DO, Wininger JM, Richardson BD (2013) Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed Laser Surg 31:163–168

    Article  PubMed Central  PubMed  Google Scholar 

  59. Montes-Molina R, Martínez-Rodríguez ME, Rodríguez AB, Martínez-Ruiz F, Prieto-Baquero A (2012) Interferential light therapy in the treatment of shoulder tendinopathies: a randomized controlled pilot study. Clin Rehabil 26:1114–1122

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research project was supported by Scientific Research Grant No. C-11-010 (2011) and No. MAB-102-56 (2013) provided by the Ministry of National Defense-Medical Affairs Bureau, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Tsu Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CC., Ku, CH., Hsu, WC. et al. Five-day, low-level laser therapy for sports-related lower extremity periostitis in adult men: a randomized, controlled trial. Lasers Med Sci 29, 1485–1494 (2014). https://doi.org/10.1007/s10103-014-1554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1554-z

Keywords

Navigation