Skip to main content

Advertisement

Log in

High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells

Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In periodontal therapy, the use of low-level diode lasers has recently been considered to improve wound healing of the gingival tissue. However, its effects on human gingival epithelial cells (HGECs) remain unknown. The aim of the present study was to examine whether high-frequency low-level diode laser irradiation stimulates key cell responses in wound healing, proliferation and migration, in primary cultured HGECs in vitro. HGECs were derived from seven independent gingival tissue specimens. Cultured HGECs were exposed to a single session of high-frequency (30 kHz) low-level diode laser irradiation with various irradiation time periods (fluence 5.7–56.7 J/cm2). After 20–24 h, cell proliferation was evaluated by WST-8 assay and [3H]thymidine incorporation assay, and cell migration was monitored by in vitro wound healing assay. Further, phosphorylation of the mitogen-activated protein kinase (MAPK) pathways after irradiation was investigated by Western blotting. The high-frequency low-level irradiation significantly increased cell proliferation and [3H]thymidine incorporation at various irradiation time periods. Migration of the irradiated cells was significantly accelerated compared with the nonirradiated control. Further, the low-level diode laser irradiation induced phosphorylation of MAPK/extracellular signal-regulated protein kinase (ERK) at 5, 15, 60, and 120 min after irradiation. Stress-activated protein kinases/c-Jun N-terminal kinase and p38 MAPK remained un-phosphorylated. The results show that high-frequency low-level diode laser irradiation promotes HGEC proliferation and migration in association with the activation of MAPK/ERK, suggesting that laser irradiation may accelerate gingival wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Mester E, Gyenes G, Tota JG (1969) Experimentation on the interaction between infrared laser and wound healing. Z Exp Chir 2:94–101

    Google Scholar 

  2. Ohshiro T, Calderhead RG (1991) Development of low reactive-level laser therapy and its present status. J Clin Laser Med Surg 9(4):267–275

    CAS  PubMed  Google Scholar 

  3. Hopkins JT, McLoda TA, Seegmiller JG, David Baxter G (2004) Low-level laser therapy facilitates superficial wound healing in humans: a triple-blind, sham-controlled study. J Athl Train 39(3):223–229

    PubMed Central  PubMed  Google Scholar 

  4. Almeida-Lopes L, Rigau J, Zângaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29(2):179–184

    Article  CAS  PubMed  Google Scholar 

  5. Chow RT, Heller GZ, Barnsley L (2006) The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124(1–2):201–210

    Article  PubMed  Google Scholar 

  6. Huang TH, Lu YC, Kao CT (2012) Low-level diode laser therapy reduces lipopolysaccharide (LPS)-induced bone cell inflammation. Lasers Med Sci 27(3):621–627

    Article  PubMed  Google Scholar 

  7. Khadra M, Kasem N, Haanæs HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(6):693–700

    Article  PubMed  Google Scholar 

  8. Ishikawa I, Aoki A, Takasaki AA, Mizutani K, Sasaki KM, Izumi Y (2009) Application of lasers in periodontics: true innovation or myth? Periodontol 50:90–126

    Article  Google Scholar 

  9. de Paula Eduardo C, de Freitas PM, Esteves-Oliveira M, Aranha AC, Ramalho KM, Simões A, Bello-Silva MS, Tunér J (2010) Laser phototherapy in the treatment of periodontal disease: a review. Lasers Med Sci 25(6):781–792

    Article  PubMed  Google Scholar 

  10. Qadri T, Miranda L, Tunér J, Gustafsson A (2005) The short-term effects of low-level lasers as adjunct therapy in the treatment of periodontal inflammation. J Clin Periodontol 32(7):714–719

    Article  CAS  PubMed  Google Scholar 

  11. Aykol G, Baser U, Maden I, Kazak Z, Onan U, Tanrikulu-Kucuk S, Ademoglu E, Issever H, Yalcin F (2011) The effect of low-level laser therapy as an adjunct to non-surgical periodontal treatment. J Periodontol 82(3):481–488

    Article  PubMed  Google Scholar 

  12. Makhlouf M, Dahaba MM, Tunér J, Eissa SA, Harhash TA (2012) Effect of adjunctive low level laser therapy (LLLT) on nonsurgical treatment of chronic periodontitis. Photomed Laser Surg 30(3):160–166

    Article  CAS  PubMed  Google Scholar 

  13. Damante CA, Greghi SL, Sant'Ana AC, Passanezi E (2004) Clinical evaluation of the effects of low-intensity laser (GaAlAs) on wound healing after gingivoplasty in humans. J Appl Oral Sci 12(2):133–136

    Article  PubMed  Google Scholar 

  14. Damante CA, Greghi SL, Sant'Ana AC, Passanezi E, Taga R (2004) Histomorphometric study of the healing of human oral mucosa after gingivoplasty and low-level laser therapy. Lasers Surg Med 35(5):377–384

    Article  PubMed  Google Scholar 

  15. Amorim JC, de Sousa GR, de Barros SL, Prates RA, Pinotti M, Ribeiro MS (2006) Clinical study of the gingiva healing after gingivectomy and low-level laser therapy. Photomed Laser Surg 24(5):588–594

    Article  PubMed  Google Scholar 

  16. Ozcelik O, Cenk Haytac M, Kunin A, Seydaoglu G (2008) Improved wound healing by low-level laser irradiation after gingivectomy operations: a controlled clinical pilot study. J Clin Periodontol 35(3):250–254

    Article  PubMed  Google Scholar 

  17. Ozcelik O, Cenk Haytac M, Seydaoglu G (2008) Enamel matrix derivative and low-level laser therapy in the treatment of intra-bony defects: a randomized placebo-controlled clinical trial. J Clin Periodontol 35(2):147–156

    Article  PubMed  Google Scholar 

  18. Häkkinen L, Uitto VJ, Larjava H (2000) Cell biology of gingival wound healing. Periodontol 24(1):127–152

    Article  Google Scholar 

  19. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22(4):212–218

    Article  CAS  PubMed  Google Scholar 

  20. Ohshima M, Yamaguchi Y, Micke P, Abiko Y, Otsuka K (2008) In vitro characterization of the cytokine profile of the epithelial cell rests of Malassez. J Periodontol 79(5):912–919

    Article  CAS  PubMed  Google Scholar 

  21. Marini I, Gatto MR, Bonetti GA (2010) Effects of superpulsed low-level laser therapy on temporomandibular joint pain. Clin J Pain 26(7):611–616

    Article  PubMed  Google Scholar 

  22. Romeo U, Del Vecchio A, Capocci M, Maggiore C, Ripari M (2010) The low level laser therapy in the management of neurological burning mouth syndrome: a pilot study. Ann Stomatol (Roma) 1(1):14–18

    Google Scholar 

  23. Scoletta M, Arduino PG, Reggio L, Dalmasso P, Mozzati M (2010) Effect of low-level laser irradiation on bisphosphonate-induced osteonecrosis of the jaws: preliminary results of a prospective study. Photomed Laser Surg 28(2):179–184

    Article  CAS  PubMed  Google Scholar 

  24. Cafaro A, Albanese G, Arduino PG, Mario C, Massolini G, Mozzati M, Broccoletti R (2010) Effect of low-level laser irradiation on unresponsive oral lichen planus: early preliminary results in 13 patients. Photomed Laser Surg 28(Suppl 2):S99–S103

    CAS  PubMed  Google Scholar 

  25. Mozzati M, Martinasso G, Cocero N, Pol R, Maggiora M, Muzio G, Canuto RA (2011) Influence of superpulsed laser therapy on healing processes following tooth extraction. Photomed Laser Surg 29(8):565–571

    Article  PubMed  Google Scholar 

  26. Romeo U, Galanakis A, Marias C, Vecchio AD, Tenore G, Palaia G, Vescovi P, Polimeni A (2011) Observation of pain control in patients with bisphosphonate-induced osteonecrosis using low level laser therapy: preliminary results. Photomed Laser Surg 29(7):447–452

    Article  PubMed  Google Scholar 

  27. Ohshima M, Sato M, Ishikawa M, Maeno M, Otsuka K (2002) Physiologic levels of epidermal growth factor in saliva stimulate cell migration of an oral epithelial cell line, HO-1-N-1. Eur J Oral Sci 110(2):130–136

    Article  CAS  PubMed  Google Scholar 

  28. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9(9):726–735

    CAS  PubMed  Google Scholar 

  29. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22):3100–3112

    Article  CAS  PubMed  Google Scholar 

  30. Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway. J Cell Physiol 187(1):73–80

    Article  CAS  PubMed  Google Scholar 

  31. Miyata H, Genma T, Ohshima M, Yamaguchi Y, Hayashi M, Takeichi O, Ogiso B, Otsuka K (2006) Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation of cultured human dental pulp cells by low-power gallium-aluminium-arsenic laser irradiation. Int Endod J 39(3):238–244

    Article  CAS  PubMed  Google Scholar 

  32. Aleksic V, Aoki A, Iwasaki K, Takasaki AA, Wang CY, Abiko Y, Ishikawa I, Izumi Y (2010) Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med Sci 25(4):559–569

    Article  PubMed  Google Scholar 

  33. Teranishi S, Kimura K, Nishida T (2009) Role of formation of an ERK-FAK-paxillin complex in migration of human corneal epithelial cells during wound closure in vitro. Invest Ophthalmol Vis Sci 50(12):5646–5652

    Article  PubMed  Google Scholar 

  34. Schindl A, Merwald H, Schindl L, Kaun C, Wojta J (2003) Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation. Br J Dermatol 148(2):334–336

    Article  CAS  PubMed  Google Scholar 

  35. Azevedo LH, de Paula EF, Moreira MS, de Paula EC, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study. Lasers Med Sci 21(2):86–89

    Article  PubMed  Google Scholar 

  36. Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos Bueno MR, Eduardo Cde P, Zatz M (2008) Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 40(6):433–438

    Article  PubMed  Google Scholar 

  37. Ninomiya T, Miyamoto Y, Ito T, Yamashita A, Wakita M, Nishisaka T (2003) High-intensity pulsed laser irradiation accelerates bone formation in metaphyseal trabecular bone in rat femur. J Bone Miner Metab 21(2):67–73

    Article  PubMed  Google Scholar 

  38. Tuby H, Maltz L, Oron U (2006) Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers Surg Med 38(7):682–688

    Article  PubMed  Google Scholar 

  39. Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B (2008) Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci 23(2):211–215

    Article  PubMed  Google Scholar 

  40. Kreisler M, Christoffers AB, Al Haj H, Willershausen B, d'Hoedt B (2002) Low level 809 nm diode laser induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30(5):365–369

    Article  PubMed  Google Scholar 

  41. Basso FG, Pansani TN, Turrioni AP, Bagnato VS, Hebling J, de Souza Costa CA (2012) In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent 2012:719452

    Article  PubMed Central  PubMed  Google Scholar 

  42. Khadra M, Lyngstadaas SP, Haanæs HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26(17):3503–3509

    Article  CAS  PubMed  Google Scholar 

  43. Kreisler M, Christoffers AB, Willershausen B, d'Hoedt B (2003) Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol 30(4):353–358

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from the Global Center of Excellence Program for International Research Center for Molecular Science in Tooth and Bone Diseases at Tokyo Medical and Dental University from the Ministry of Education, Culture, Sports, Science and Technology of Japan; and by Grants-in-Aid for Scientific Research (C) (no. 22592308 for A.A., no. 21592637 for M.O.) from Japan Society for the Promotion of Science. We wish to thank Drs. Naoto Suzuki, Kunikazu Noguchi (Nihon University School of Dentistry, Tokyo, Japan), Dr. Yoichi Taniguchi (Tokyo Medical and Dental University, Tokyo, Japan), Dr. Kai Kappert (Charité-University Medicine Berlin, Germany) for their kind support. Also, appreciation is expressed to Dr. Nelson Marquina, USA Laser Biotech Inc., VA and Mr. Hiroshige Kusumoto, Wavelengths Inc., Tokyo, Japan for their kind technical advices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akira Aoki or Mitsuhiro Ohshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ejiri, K., Aoki, A., Yamaguchi, Y. et al. High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells. Lasers Med Sci 29, 1339–1347 (2014). https://doi.org/10.1007/s10103-013-1292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1292-7

Keywords

Navigation