, Volume 28, Issue 5, pp 1281-1288
Date: 21 Nov 2012

LLLT improves tendon healing through increase of MMP activity and collagen synthesis

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The Achilles tendon has a high incidence of rupture, and the healing process leads to a disorganized extracellular matrix (ECM) with a high rate of injury recurrence. To evaluate the effects of different conditions of low-level laser (LLL) application on partially tenotomized tendons, adult male rats were divided into the following groups: G1, intact; G2, injured; G3, injured + LLL therapy (LLLT; 4 J/cm2 continuous); G4, injured + LLLT (4 J/cm2, 20 Hz); G5, injured; G6, injured + LLLT (4 J/cm2 continuous); and G7, injured + LLLT (4 J/cm2, 20 Hz until the 7th day and 2 kHz from 8 to 14 days). G2, G3, and G4 were euthanized 8 days after injury, and G5, G6, and G7 were euthanized on the 15th day. The quantification of hydroxyproline (HOPro) and non-collagenous protein (NCP), zymography for matrix metalloproteinase (MMP)-2 and MMP-9, and Western blotting (WB) for collagen types I and III were performed. HOPro levels showed a significant decrease in all groups (except G7) when compared with G1. The NCP level increased in all transected groups. WB for collagen type I showed an increase in G4 and G7. For collagen type III, G4 presented a higher value than G2. Zymography for MMP-2 indicated high values in G4 and G7. MMP-9 increased in both treatment groups euthanized at 8 days, especially in G4. Our results indicate that the pulsed LLLT improved the remodeling of the ECM during the healing process in tendons through activation of MMP-2 and stimulation of collagen synthesis.