Skip to main content

Advertisement

Log in

Effects of low level laser therapy (808 nm) on physical strength training in humans

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Recent studies have investigated whether low level laser therapy (LLLT) can optimize human muscle performance in physical exercise. This study tested the effect of LLLT on muscle performance in physical strength training in humans compared with strength training only. The study involved 36 men (20.8±2.2 years old), clinically healthy, with a beginner and/or moderate physical activity training pattern. The subjects were randomly distributed into three groups: TLG (training with LLLT), TG (training only) and CG (control). The training for TG and TLG subjects involved the leg-press exercise with a load equal to 80% of one repetition maximum (1RM) in the leg-press test over 12 consecutive weeks. The LLLT was applied to the quadriceps muscle of both lower limbs of the TLG subjects immediately after the end of each training session. Using an infrared laser device (808 nm) with six diodes of 60 mW each a total energy of 50.4 J of LLLT was administered over 140 s. Muscle strength was assessed using the 1RM leg-press test and the isokinetic dynamometer test. The muscle volume of the thigh of the dominant limb was assessed by thigh perimetry. The TLG subjects showed an increase of 55% in the 1RM leg-press test, which was significantly higher than the increases in the TG subjects (26%, P = 0.033) and in the CG subjects (0.27%, P < 0.001). The TLG was the only group to show an increase in muscle performance in the isokinetic dynamometry test compared with baseline. The increases in thigh perimeter in the TLG subjects and TG subjects were not significantly different (4.52% and 2.75%, respectively; P = 0.775). Strength training associated with LLLT can increase muscle performance compared with strength training only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Folland JP, Williams AG (2007) The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 37(2):145–168. doi:3724

    Article  PubMed  Google Scholar 

  2. Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679

    Article  PubMed  Google Scholar 

  3. Tagesson S, Oberg B, Good L, Kvist J (2008) A comprehensive rehabilitation program with quadriceps strengthening in closed versus open kinetic chain exercise in patients with anterior cruciate ligament deficiency: a randomized clinical trial evaluating dynamic tibial translation and muscle function. Am J Sports Med 36(2):298–307. doi:10.1177/0363546507307867

    Article  PubMed  Google Scholar 

  4. Augustsson J, Esko A, Thomee R, Svantesson U (1998) Weight training of the thigh muscles using closed vs. open kinetic chain exercises: a comparison of performance enhancement. J Orthop Sports Phys Ther 27(1):3–8

    PubMed  CAS  Google Scholar 

  5. Stensdotter AK, Hodges PW, Mellor R, Sundelin G, Hager-Ross C (2003) Quadriceps activation in closed and in open kinetic chain exercise. Med Sci Sports Exerc 35(12):2043–2047. doi:10.1249/01.MSS.0000099107.03704.AE

    Article  PubMed  Google Scholar 

  6. Verdijk LB, van Loon L, Meijer K, Savelberg HH (2009) One-repetition maximum strength test represents a valid means to assess leg strength in vivo in humans. J Sports Sci 27(1):59–68. doi:10.1080/02640410802428089

    Article  PubMed  Google Scholar 

  7. Wawrzyniak JR, Tracy JE, Catizone PV, Storrow RR (1996) Effect of closed chain exercise on quadriceps femoris peak torque and functional performance. J Athl Train 31(4):335–340

    PubMed  CAS  Google Scholar 

  8. Harris N, Cronin J, Keogh J (2007) Contraction force specificity and its relationship to functional performance. J Sports Sci 25(2):201–212. doi:10.1080/02640410600630910

    Article  PubMed  Google Scholar 

  9. Rodriguez NR, Di Marco NM, Langley S (2009) American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc 41(3):709–731. doi:10.1249/MSS.0b013e31890eb86

    Article  PubMed  Google Scholar 

  10. Hoffman JR, Kraemer WJ, Bhasin S, Storer T, Ratamess NA, Haff GG, Willoughby DS, Rogol AD (2009) Position stand on androgen and human growth hormone use. J Strength Cond Res 23(5 Suppl):S1–S59. doi:10.1519/JSC.0b013e31819df2e6

    Article  PubMed  Google Scholar 

  11. Gorgey AS, Wadee AN, Sobhi NN (2008) The effect of low-level laser therapy on electrically induced muscle fatigue: a pilot study. Photomed Laser Surg 26(5):501–506. doi:10.1089/pho.2007.2161

    Article  PubMed  Google Scholar 

  12. Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24(3):425–431. doi:10.1007/s10103-008-0592-9

    Article  PubMed  Google Scholar 

  13. Enwemeka CS (2009) Intricacies of dose in laser phototherapy for tissue repair and pain relief. Photomed Laser Surg 27(3):387–393. doi:10.1089/pho.2009.2503

    Article  PubMed  Google Scholar 

  14. Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD (2004) The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 22(4):323–329. doi:10.1089/1549541041797841

    Article  PubMed  Google Scholar 

  15. Bakeeva LE, Manteifel VM, Rodichev EB, Karu TI (1993) Formation of gigantic mitochondria in human blood lymphocytes under the effect of an He-Ne laser. Mol Biol (Mosk) 27(3):608–617

    CAS  Google Scholar 

  16. Manteifel VM, Karu TI (2005) Structure of mitochondria and activity of their respiratory chain in subsequent generations of yeast cells exposed to He-Ne laser light. Izv Akad Nauk Ser Biol 6:672–683

    PubMed  Google Scholar 

  17. Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26(5):419–424. doi:10.1089/pho.2007.2160

    Article  PubMed  Google Scholar 

  18. Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Taufer D, Manfro DS, Rech M, Danna V, Grosselli D, Generosi RA, Marcos RL, Ramos L, Bjordal JM (2009) Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24(6):857–863. doi:10.1007/s10103-008-0633-4

    Article  PubMed  Google Scholar 

  19. Caspersen CJ, Pereira MA, Curran KM (2000) Changes in physical activity patterns in the United States, by sex and cross-sectional age. Med Sci Sports Exerc 32(9):1601–1609

    Article  PubMed  CAS  Google Scholar 

  20. Nakagawa TH, Muniz TB, Baldon Rde M, Dias Maciel C, de Menezes Reiff RB, Serrao FV (2008) The effect of additional strengthening of hip abductor and lateral rotator muscles in patellofemoral pain syndrome: a randomized controlled pilot study. Clin Rehabil 22(12):1051–1060

    Article  PubMed  Google Scholar 

  21. Gulick DT, Chiappa JJ, Crowley KR, Schade ME, Wescott SR (1998) Predicting 1-RM isotonic knee extension strength utilizing isokinetic dynamometry. Isokinet Exerc Sci 7(4):145–149

    Google Scholar 

  22. Irving BA, Rutkowski J, Brock DW, Davis CK, Barrett EJ, Gaesser GA, Weltman A (2006) Comparison of Borg- and OMNI-RPE as markers of the blood lactate response to exercise. Med Sci Sports Exerc 38(7):1348–1352. doi:10.1249/01.mss.0000227322.61964.d2

    Article  PubMed  CAS  Google Scholar 

  23. Wernbom M, Augustsson J, Thomee R (2007) The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med 37(3):225–264

    Article  PubMed  Google Scholar 

  24. American College of Sports Medicine (2009) American College of Sports Medicine position stand. Progression models resistance training healthy adults. Med Sci Sports Exerc 41(3):687–708. doi:10.1249/MSS.0b013e3181915670

    Article  Google Scholar 

  25. Stone M, Plisk S, Collins D (2002) Training principles: evaluation of modes and methods of resistance training – a coaching perspective. Sports Biomech 1(1):79–103

    Article  PubMed  Google Scholar 

  26. Tonkonogi M, Walsh B, Svensson M, Sahlin K (2000) Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. J Physiol 528(Pt 2):379–388

    Article  PubMed  CAS  Google Scholar 

  27. Tonkonogi M, Sahlin K (2002) Physical exercise and mitochondrial function in human skeletal muscle. Exerc Sport Sci Rev 30(3):129–137

    Article  PubMed  Google Scholar 

  28. Sahlin K, Mogensen M, Bagger M, Fernstrom M, Pedersen PK (2007) The potential for mitochondrial fat oxidation in human skeletal muscle influences whole body fat oxidation during low-intensity exercise. Am J Physiol Endocrinol Metab 292(1):E223–E230

    Article  PubMed  CAS  Google Scholar 

  29. Hodson-Tole EF, Wakeling JM (2009) Motor unit recruitment for dynamic tasks: current understanding and future directions. J Comp Physiol B 179(1):57–66. doi:10.1007/s00360-008-0289-1

    Article  PubMed  Google Scholar 

  30. Goreham C, Green HJ, Ball-Burnett M, Ranney D (1999) High-resistance training and muscle metabolism during prolonged exercise. Am J Physiol 276(3 Pt 1):E489–E496

    PubMed  CAS  Google Scholar 

  31. Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE (1999) Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci U S A 96(3):1129–1134

    Article  PubMed  CAS  Google Scholar 

  32. Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 290(6):E1237–E1244

    Article  PubMed  CAS  Google Scholar 

  33. Harridge SD (2007) Plasticity of human skeletal muscle: gene expression to in vivo function. Exp Physiol 92(5):783–797. doi:expphysiol.2006.036525

    Article  PubMed  CAS  Google Scholar 

  34. Vierck J, O’Reilly B, Hossner K, Antonio J, Byrne K, Bucci L, Dodson M (2000) Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int 24(5):263–272. doi:10.1006/cbir.2000.0499

    Article  PubMed  CAS  Google Scholar 

  35. Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM (2008) Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol 104(6):1736–1742

    Article  PubMed  Google Scholar 

  36. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238. doi:10.1152/physrev.00019.2003

    Article  PubMed  CAS  Google Scholar 

  37. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91(2):534–551

    PubMed  CAS  Google Scholar 

  38. Holterman CE, Rudnicki MA (2005) Molecular regulation of satellite cell function. Semin Cell Dev Biol 16(4-5):575–584

    Article  PubMed  CAS  Google Scholar 

  39. Weiss N, Oron U (1992) Enhancement of muscle regeneration in the rat gastrocnemius muscle by low energy laser irradiation. Anat Embryol (Berl) 186(5):497–503

    Article  CAS  Google Scholar 

  40. Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115(Pt 7):1461–1469

    PubMed  CAS  Google Scholar 

  41. Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1448(3):372–380

    Article  PubMed  CAS  Google Scholar 

  42. Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37(9):737–763

    Article  PubMed  Google Scholar 

  43. Hawley JA (2009) Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab 34(3):355–361

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Departments of Physical Therapy and Physiological Sciences of the Federal University of São Carlos for assistance with this study, the research subjects, and also the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for partial funding of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleber Ferraresi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraresi, C., de Brito Oliveira, T., de Oliveira Zafalon, L. et al. Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26, 349–358 (2011). https://doi.org/10.1007/s10103-010-0855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-010-0855-0

Keywords

Navigation