Skip to main content

Advertisement

Log in

Combined design and load shifting for distributed energy system

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Renewable distributed energy generation (DEG) system plays an important role in future power developments and is one of the options to reduce energy consumption. It is envisaged that energy efficiency of DEG systems can be improved via load shifting (LS). This study proposed a heuristic-based numerical approach to perform LS analysis on renewable stand-alone DEG systems. The technique is an extension from a method known as the Electric System Cascade Analysis (ESCA). The new technique, which focuses on efficient electricity utilisation is able to determine the optimal: (i) load profiles, (ii) capacity of power generator, (iii) capacity and power of energy storage (ES) and (iv) charging/discharging schedule of ES. The stage-wise technique allows user to compare and determine the optimal design in a flexible way while having a better understanding of the selection of options. The application of ESCA-LS on a case study revealed that after incorporation of direct LS (load manipulation) in addition to LS by ES (supply manipulation), the power generators and ES capacity can be further reduced. While reduction of 3.1 % for solar-PV installation area and 3.9 % for biomass power generator is recorded, ES power-related capacity and energy-related capacity managed a higher reduction of up to 19.0 and 13.2 % for the main case study

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bakker V, Bosman MGC, Molderink A, Hurink JL, Smit GJM (2010) Improved heat demand prediction of individual households. In: First conference on control methodologies and technology for energy efficiency, Vilamoura, Portugal, 2010. Elsevier Ltd., pp 110–115. doi:10.3182/20100329-3-PT-3006.00022

  • Bandyopadhyay S (2011) Design and optimization of isolated energy systems through pinch analysis. Asia-Pac J Chem Eng 6(3):518–526. doi:10.1002/apj.551

    Article  CAS  Google Scholar 

  • Bernard T (2012) Impact analysis of rural electrification projects in sub-Saharan Africa. World Bank Res Obs 27(1):33–51. doi:10.1093/wbro/lkq008

    Article  Google Scholar 

  • Bhattacharyya SC, Ohiare S (2012) The Chinese electricity access model for rural electrification: approach, experience and lessons for others. Energy Policy 49:676–687. doi:10.1016/j.enpol.2012.07.003

    Article  Google Scholar 

  • Bosman MGC, Bakker V, Molderink A, Hurink JL, Smit GJM (2010) On the microCHP scheduling problem. In: 3rd global conference on power control and optimization PCO, 2010, Gold Coast, Australia, 2010. AIP conference proceedings 1239. PCO, pp 367–374

  • Cosentino V, Favuzza S, Graditi G, Ippolito MG, Massaro F, Riva Sanseverino E, Zizzo G (2012) Smart renewable generation for an islanded system. Technical and economic issues of future scenarios. Energy 39(1):196–204. doi:10.1016/j.energy.2012.01.030

    Article  Google Scholar 

  • Dietrich K, Latorre JM, Olmos L, Ramos A (2012) Demand response in an isolated system with high wind integration. IEEE Trans Power Syst 27(1):20–29

    Article  Google Scholar 

  • Evans A, Strezov V, Evans TJ (2012) Assessment of utility energy storage options for increased renewable energy penetration. Renew Sust Energy Rev 16(6):4141–4147. doi:10.1016/j.rser.2012.03.048

    Article  Google Scholar 

  • Finn P, O’Connell M, Fitzpatrick C (2013) Demand side management of a domestic dishwasher: wind energy gains, financial savings and peak-time load reduction. Appl Energy 101:678–685. doi:10.1016/j.apenergy.2012.07.004

    Article  Google Scholar 

  • Gellings CW (1985) The concept of demand-side management for electric utilities. Proc IEEE 73(10):1468–1470

    Article  Google Scholar 

  • Ghosh N, Sharma S, Bhattacharjee S (2012) A load flow based approach for optimum allocation of distributed generation units in the distribution network for voltage improvement and loss minimization. Int J Comput Appl 50(15):15–22

    Google Scholar 

  • Gudi N, Wang L, Devabhaktuni V (2012) A demand side management based simulation platform incorporating heuristic optimization for management of household appliances. Int J Electr Power Energy Syst 43(1):185–193. doi:10.1016/j.ijepes.2012.05.023

    Article  Google Scholar 

  • Gutiérrez-Arriaga C, Serna-González M, Ponce-Ortega J, El-Halwagi M (2012) Multi-objective optimization of steam power plants for sustainable generation of electricity. Clean Technol Environ Policy 1–16. doi:10.1007/s10098-012-0556-4

  • Ho WS, Hashim H, Hassim MH, Muis ZA, Shamsuddin NLM (2012) Design of distributed energy system through Electric System Cascade Analysis (ESCA). Appl Energy 99:309–315. doi:10.1016/j.apenergy.2012.04.016

    Article  CAS  Google Scholar 

  • Iglesias F, Palensky P, Cantos S, Kupzog F (2012) Demand side management for stand-alone hybrid power systems based on load identification. Energies 5(11):4517–4532

    Article  Google Scholar 

  • Liming H (2009) Financing rural renewable energy: a comparison between China and India. Renew Sust Energy Rev 13(5):1096–1103

    Article  Google Scholar 

  • Lujano-Rojas JM, Monteiro C, Dufo-López R, Bernal-Agustín JL (2012) Optimum load management strategy for wind/diesel/battery hybrid power systems. Renew Energy 44:288–295. doi:10.1016/j.renene.2012.01.097

    Article  Google Scholar 

  • Marsden J (2011) Distributed generation systems: a new paradigm for sustainable energy. In: 2011 IEEE green technologies conference, Baton Rouge, 14–15 April 2011. IEEE, pp 57–60

  • Molderink A, Bakker V, Bosman MGC, Hurink JL, Smit GJM (2009) Domestic energy management methodology for optimizing efficiency in smart grids. In: IEEE Bucharest PowerTech, 2009, Bucharest, Romania, June 28–July 2 2009. IEEE, pp 2339–2945

  • Molderink A, Bakker V, Bosman MGC, Hurink JL, Smit GJM (2010) A three-step methodology to improve domestic energy efficiency. In: IEEE Innovative smart grid technologies conference 2010, Gaithersburg, 19–21 Jan 2010 IEEE, pp 289–296

  • Nemet A, Klemeš JJ, Varbanov PS (2011) Methodology for maximising the use of renewables with variable availability. Comput-Aided Chem Eng Vol 29:1944–1948. doi:10.1016/b978-0-444-54298-4.50167-7

    Article  Google Scholar 

  • Nemet A, Kravanja Z, Klemeš J (2012) Integration of solar thermal energy into processes with heat demand. Clean Technol Environ Policy 14(3):453–463. doi:10.1007/s10098-012-0457-6

    Article  Google Scholar 

  • Othman MYH, Sopian K, Yatim B, Dalimin MN (1993) Diurnal pattern of global solar radiation in the tropics: a case study in Malaysia. Renew Energy 3(6):741–745

    Article  Google Scholar 

  • Pina A, Silva C, Ferrão P (2012) The impact of demand side management strategies in the penetration of renewable electricity. Energy 41(1):128–137. doi:10.1016/j.energy.2011.06.013

    Article  Google Scholar 

  • Shaw R, Attree M, Jackson T, Kay M (2009) The value of reducing distribution losses by domestic load-shifting: a network perspective. Energy Policy 37(8):3159–3167. doi:10.1016/j.enpol.2009.04.008

    Article  Google Scholar 

  • Shin HW, Hashim H (2012) Integrated design of renewable energy decentralized power plant comprising energy storage for off-grid eco village. Global J Technol Optim 3:36–41

    Google Scholar 

  • Steward D, Saur G, Penev M, Ramsden T (2009) Lifecycle cost analysis of hydrogen versus other technologies for electrical energy storage. NREL/TP-560-46719

  • Tan CW, Green TC, Hernandez-Aramburo CA (2010) A stochastic method for battery sizing with uninterruptible-power and demand shift capabilities in PV (photovoltaic) systems. Energy 35(12):5082–5092. doi:10.1016/j.energy.2010.08.007

    Article  Google Scholar 

  • Topkaya SO (2012) A discussion on recent developments in Turkey’s emerging solar power market. Renew Sust Energy Rev 16(6):3754–3765

    Article  Google Scholar 

  • Updated Capital Cost Estimates for Electricity Generation Plants (2010) U.S. Energy Information Administration, Washington, United States

  • Van Els RH, de Souza Vianna JN, Brasil ACP (2012) The Brazilian experience of rural electrification in the Amazon with decentralized generation—the need to change the paradigm from electrification to development. Renew Sust Energy Rev 16(3):1450–1461

    Article  Google Scholar 

Download references

Acknowledgments

The authors would also like to express a deep appreciation to the Malaysian Ministry of Higher Education (MOHE) and University Teknologi Malaysia (UTM) for providing the fund under the GUP research grant of vote number Q.J130000.7125.01H52 and Hungarian project TAMOP-4.2.2.A-11/1/KONV-2012-0072—Design and optimisation of modernisation and efficient operation of energy supply and utilisation systems using renewable energy sources and ICTs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haslenda Hashim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, W.S., Hashim, H., Lim, J.S. et al. Combined design and load shifting for distributed energy system. Clean Techn Environ Policy 15, 433–444 (2013). https://doi.org/10.1007/s10098-013-0617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-013-0617-3

Keywords

Navigation