Skip to main content

Advertisement

Log in

Detection of signature volatiles for cariogenic microorganisms

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The development of a breath test by the identification of volatile organic compounds (VOCs) emitted by cariogenic bacteria is a promising approach for caries risk assessment and early caries detection. The aim of the present study was to investigate the volatile profiles of three major cariogenic bacteria and to assess whether the obtained signatures were species-specific. Therefore, the headspaces above cultures of Streptococcus mutans, Lactobacillus salivarius and Propionibacterium acidifaciens were analysed after 24 and 48 h of cultivation using gas chromatography and mass spectrometry. A volatile database was queried for the obtained VOC profiles. Sixty-four compounds were detected within the analysed culture headspaces and were absent (36) or at least only present in minor amounts (28) in the control headspace. For S. mutans 18, for L. salivarius three and for P. acidifaciens five compounds were found to be unique signature VOCs. Database matching revealed that the identified signatures of all bacteria were unique. Furthermore, 13 of the 64 detected substances have not been previously reported to be emitted by bacteria or fungi. Specific VOC signatures were found in all the investigated bacteria cultures. The obtained results encourage further research to investigate the transferability to in vivo conditions towards the development of a breath test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Osborne JW, Summitt JB (1998) Extension for prevention: is it relevant today? Am J Dent 11(4):189–196

    CAS  PubMed  Google Scholar 

  2. Peters MC, McLean ME (2001) Minimally invasive operative care. I. Minimal intervention and concepts for minimally invasive cavity preparations. J Adhes Dent 3(1):7–16

    CAS  PubMed  Google Scholar 

  3. Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, Pitts NB (2007) The International Caries Detection and Assessment System (ICDAS): an integrated system for measuring dental caries. Community Dent Oral Epidemiol 35(3):170–178

    Article  CAS  PubMed  Google Scholar 

  4. Meyer-Lueckel H, Bitter K, Paris S (2012) Randomized controlled clinical trial on proximal caries infiltration: three-year follow-up. Caries Res 46(6):544–548

    Article  CAS  PubMed  Google Scholar 

  5. Mejàre I, Axelsson S, Dahlén G, Espelid I, Norlund A, Tranæus S, Twetman S (2014) Caries risk assessment. A systematic review. Acta Odontol Scand 72(2):81–91

    Article  PubMed  Google Scholar 

  6. Poole DF, Newman HN (1971) Dental plaque and oral health. Nature 234(5328):329–331

    Article  CAS  PubMed  Google Scholar 

  7. Wolff D, Frese C, Maier-Kraus T, Krueger T, Wolff B (2013) Bacterial biofilm composition in caries and caries-free subjects. Caries Res 47(1):69–77

    Article  CAS  PubMed  Google Scholar 

  8. Blaser M, Bork P, Fraser C, Knight R, Wang J (2013) The microbiome explored: recent insights and future challenges. Nat Rev Microbiol 11(3):213–217

    Article  CAS  PubMed  Google Scholar 

  9. Tait E, Perry JD, Stanforth SP, Dean JR (2014) Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. J Chromatogr Sci 52(4):363–373

    Article  CAS  PubMed  Google Scholar 

  10. Höckelmann C, Jüttner F (2004) Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema. Water Sci Technol 49(9):47–54

    PubMed  Google Scholar 

  11. Farag MA, Ryu CM, Sumner LW, Paré PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67(20):2262–2268

    Article  CAS  PubMed  Google Scholar 

  12. Peeters M (1998) Urea breath test: a diagnostic tool in the management of Helicobacter pylori-related gastrointestinal diseases. Acta Gastroenterol Belg 61(3):332–335

    CAS  PubMed  Google Scholar 

  13. Smith AD, Cowan JO, Brassett KP, Herbison GP, Taylor DR (2005) Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 352(21):2163–2173

    Article  CAS  PubMed  Google Scholar 

  14. Scott-Thomas A, Epton M, Chambers S (2013) Validating a breath collection and analysis system for the new tuberculosis breath test. J Breath Res 7(3):037108

    Article  PubMed  Google Scholar 

  15. Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42(Database issue):D744–D748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13(11):3047–3058

    Article  CAS  PubMed  Google Scholar 

  17. Zehm S, Schweinitz S, Würzner R, Colvin HP, Rieder J (2012) Detection of Candida albicans by mass spectrometric fingerprinting. Curr Microbiol 64(3):271–275

    Article  CAS  PubMed  Google Scholar 

  18. Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Märk TD (2008) On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74(7):2179–2186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hunziker L, Bönisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81(3):821–830

    Article  PubMed Central  PubMed  Google Scholar 

  20. Walsh K, Jones GJ, Dunstan RH (1998) Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry 49(5):1227–1239

    Article  CAS  PubMed  Google Scholar 

  21. Kawai F (1995) Bacterial degradation of glycol ethers. Appl Microbiol Biotechnol 44(3-4):532–538

    Article  CAS  PubMed  Google Scholar 

  22. Kleemann R, Meckenstock RU (2011) Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiol Ecol 78(3):488–496

    Article  CAS  PubMed  Google Scholar 

  23. Kunz DA, Chapman PJ (1981) Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid. J Bacteriol 146(1):179–191

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Leahy JG, Tracy KD, Eley MH (2003) Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria. FEMS Microbiol Ecol 43(2):271–276

    Article  CAS  PubMed  Google Scholar 

  25. Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11(1):209–219

    Article  CAS  PubMed  Google Scholar 

  26. Sikkema J, de Bont JA (1993) Metabolism of tetralin (1,2,3,4-tetrahydronaphthalene) in Corynebacterium sp. strain C125. Appl Environ Microbiol 59(2):567–572

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mss. Anja and Antje Richter for their most valuable assistance in the laboratory and Janette Nickel for her help with the mVOC database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Preissner.

Ethics declarations

Conflict of interest

The authors state that they have no affiliations with or involvement in any organisation or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertel, M., Preissner, R., Gillissen, B. et al. Detection of signature volatiles for cariogenic microorganisms. Eur J Clin Microbiol Infect Dis 35, 235–244 (2016). https://doi.org/10.1007/s10096-015-2536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2536-1

Keywords

Navigation