, Volume 17, Issue 1, pp 127-141
Date: 02 Jun 2013

Persistent impairments in hippocampal function following a brief series of photoperiod shifts in rats

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The impact of an acute circadian disruption on learning and memory in male and female rats was examined. Circadian disruption was elicited using a brief series of photoperiod shifts. Previous research using male rats showed that acute circadian disruption during acquisition of a spatial navigation task impaired long-term retention and that chronic circadian disruption impaired acquisition of the same task. However, the long-term effects of acute circadian disruption following circadian re-entrainment and whether sex differences in response to circadian disruption exist are still unknown. For the present study, rats were trained on the standard, spatial version of the Morris water task (MWT) and a visual discrimination task developed for the eight-arm radial maze. After reaching asymptotic performance, behavioural training was terminated and the experimental group experienced a series of photoperiod shifts followed by circadian re-entrainment. Following circadian re-entrainment, the subjects were given retention tests on the MWT and visual discrimination task. Following retention testing, an extra-dimensional shift using the eight-arm radial maze was also performed. An acute episode of circadian disruption elicited via photoperiod shifts negatively impacted retention of spatial memory in male and female rats. Retention of the visual discrimination task and the ability to detect extra-dimensional shifts were not impaired. The observed impairments on the MWT indicate that hippocampal representations are susceptible to a small number of photoperiod shifts even if the association is acquired prior to rhythm manipulation and retention is assessed following rhythm stabilization. Effects were limited to a hippocampus-dependent task, indicating that impairments are specific, not global.