The European Physical Journal B - Condensed Matter and Complex Systems

, Volume 1, Issue 2, pp 233–244

Adsorption and spreading of polymers at plane interfaces; theory and molecular dynamics simulations

  • M.C.P.  van Eijk
  • M.A.  Cohen Stuart
  • S. Rovillard
  • J.  De Coninck
Article

DOI: 10.1007/s100510050177

Cite this article as:
van Eijk, M., Cohen Stuart, M., Rovillard, S. et al. Eur. Phys. J. B (1998) 1: 233. doi:10.1007/s100510050177

Abstract:

Nonequilibrium processes play a key role in the adsorption kinetics of macromolecules. It is expected that the competition between transport of polymer towards an interface and its subsequent spreading has a significant influence on the adsorbed amount. An increase of the transport rate can lead to an increase of the adsorbed amount, especially when the polymer has too little time to spread at the interface. In this study we present both molecular dynamics simulations and analytical calculations to describe some aspects of the adsorption kinetics. From MD simulations on a poly(ethylene oxide) chain in vacuum near a graphite surface, we conclude that the spreading process can, in first approximation, be described by either a simple exponential function or by first-order reaction kinetics. Combining these spreading models with the transport equations for two different geometries (stagnation-point flow and overflowing cylinder) we are able to derive analytical equations for the adsorption kinetics of polymers at solid-liquid and at liquid-fluid interfaces.

PACS.

68.10.JyKinetics (evaporation, adsorption, condensation, catlysis, etc.) -68.45.DaAdsorption and desorption kinetics; evaporation and condensation - 36.20.EyConformation (statistics and dynamics)

Copyright information

© EDP Sciences, Springer-Verlag 1998

Authors and Affiliations

  • M.C.P.  van Eijk
    • 1
  • M.A.  Cohen Stuart
    • 1
  • S. Rovillard
    • 2
  • J.  De Coninck
    • 2
  1. 1.Wageningen Agricultural UniversityLaboratory for Physical Chemistry and Colloid ScienceHB WageningenThe Netherlands
  2. 2.University of Mons-HainautResearch Centre for Molecular ModellingMonsBelgium