Skip to main content
Log in

Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger length dimensions

Interprétation de la conductivité hydraulique dans un aquifère de roche fracturée sur des dimensions en augmentation croissante

Interpretación de la conductividad hidráulica en un acuífero de roca fracturada sobre dimensiones de longitud cada vez más grandes

越来越大长度尺寸上断裂岩层含水层内水力传导率的解译

Interpretação da condutividade hidráulica em um aquífero fraturado sobre dimensões de comprimento cada vez maiores

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A comparison of the hydraulic conductivity over increasingly larger volumes of crystalline rock was conducted in the Piedmont physiographic region near Bethesda, Maryland, USA. Fluid-injection tests were conducted on intervals of boreholes isolating closely spaced fractures. Single-hole tests were conducted by pumping in open boreholes for approximately 30 min, and an interference test was conducted by pumping a single borehole over 3 days while monitoring nearby boreholes. An estimate of the hydraulic conductivity of the rock over hundreds of meters was inferred from simulating groundwater inflow into a kilometer-long section of a Washington Metropolitan Area Transit Authority tunnel in the study area, and a groundwater modeling investigation over the Rock Creek watershed provided an estimate of the hydraulic conductivity over kilometers. The majority of groundwater flow is confined to relatively few fractures at a given location. Boreholes installed to depths of approximately 50 m have one or two highly transmissive fractures; the transmissivity of the remaining fractures ranges over five orders of magnitude. Estimates of hydraulic conductivity over increasingly larger rock volumes varied by less than half an order of magnitude. While many investigations point to increasing hydraulic conductivity as a function of the measurement scale, a comparison with selected investigations shows that the effective hydraulic conductivity estimated over larger volumes of rock can either increase, decrease, or remain stable as a function of the measurement scale. Caution needs to be exhibited in characterizing effective hydraulic properties in fractured rock for the purposes of groundwater management.

Résumé

Une comparaison de la conductivité hydraulique sur des volumes de roche cristalline en augmentation croissante a été réalisée dans la région physiographique du Piedmont près de Bethesda, Maryland, USA. Des essais d’injection de fluide ont été conduits sur des intervalles de forages isolant des fractures très proches les unes des autres. Des essais en puits unique ont été réalisés par pompage au sein de forages ouverts durant approximativement 30 minutes et un essai d’interférences a été conduit par pompage dans un forage unique, durant trois jours, avec suivi des forages voisins. Une évaluation de la conductivité hydraulique de la roche a été déduite sur des centaines de mètres en simulant les entrées d’eau souterraine dans une section d’un kilomètre de long du tunnel de l’autorité de transit de la région métropolitaine de Washington et un travail de modélisation des eaux souterraines sur le bassin versant du Creek Rock a fourni une estimation de la conductivité hydrauliques sur des kilomètres. En un lieu donné, la majorité de l’écoulement d’eau souterraine est confinée au sein de relativement peu de fractures. Des forages atteignant des profondeurs d’environ 50 m recoupent une ou deux fractures très transmissives ; la transmissivité des autres fractures couvre une gamme de cinq ordres de grandeur. Les estimations de la conductivité hydraulique sur des volumes de roche en augmentation croissante varient sur moins de la moitié d’un ordre de grandeur. Tandis que de nombreux travaux soulignent l’augmentation de la conductivité hydraulique en fonction de l’échelle de mesure, une comparaison avec des travaux sélectionnés montre que la conductivité hydraulique équivalente estimée sur de gros volumes de roche peut soit augmenter, décroitre ou rester stable en fonction de l’échelle de mesure. Des précautions doivent être prises lors de la caractérisation des propriétés de conductivité hydraulique équivalente des roches fracturées avec des objectifs de gestion des eaux souterraines.

Resumen

Se llevó a cabo una comparación de la conductividad hidráulica entre volúmenes cada vez mayores de roca cristalina en la región fisiográfica de piedemonte cerca de Bethesda, Maryland, EE.UU. Las pruebas de inyección de fluido se realizaron por intervalos en pozos aislando las fracturas muy próximas entre sí. Las pruebas de un pozo se llevaron a cabo mediante el bombeo en pozos abiertos durante aproximadamente 30 minutos, y la prueba de interferencia se efectuó mediante el bombeo de un solo pozo durante tres días mientras se monitoreaban los pozos cercanos. Una estimación de la conductividad hidráulica de la roca para cientos de metros se infiere de la simulación del flujo del agua subterránea en una sección de un kilómetro de largo de un túnel de la Washington Metropolitan Area Transit Authority en el área de estudio, y una investigación sobre la modelización de las aguas subterráneas de la cuenca Rock Creek proporcionó una estimación de la conductividad hidráulica sobre kilómetros. La mayoría del flujo de agua subterránea se limita a unas relativamente pocas fracturas en un lugar determinado. Los pozos instalados a profundidades de aproximadamente 50 m tienen una o dos fracturas altamente transmisivas; la transmisividad de las fracturas restantes tienen rangos de más de cinco órdenes de magnitud. Las estimaciones de la conductividad hidráulica con volúmenes de roca cada vez más grandes variaron por lo menos en la mitad de un orden de magnitud. Mientras que muchas investigaciones apuntan a aumentar la conductividad hidráulica como una función de la escala de medición, una comparación con las investigaciones seleccionadas muestra que la conductividad hidráulica efectiva calculada sobre grandes volúmenes de roca puede aumentar, disminuir, o permanecer estable como una función de la escala de medición. A los efectos de la gestión del agua subterránea debe tenerse como precaución considerar con eficiencia la caracterización de las propiedades hidráulicas en la roca fracturada.

摘要

对美国马里兰州贝塞斯达附近山麓自然地理区越来越多的大量结晶岩水力传导率进行了对比。在隔离密集断裂的钻孔区间进行了流体注入实验。在开放钻孔抽水大约30分钟进行了单孔实验,通过单孔抽水三天,同时监测附近的钻孔,进行了干扰实验。根据模拟地下水进入研究区内华盛顿都市区运输管理局隧道一公里长区段的流入量推断出几百米厚岩层水力传导率的估算值,Rock Creek流域地下水模拟调查提供了数公里范围内水力传导率的估算值。大部分地下水流限制在特定位置上相对少的断裂中。设置深度大约50米的钻孔有一个或两个导水率高的断裂;其余断裂的导水率在五个量级范围内。越来越大岩层体积的水力传导率估算值变化不到半个数量级。在许多调查根据测量尺度确定日益增加的水力传导率时,与选择的调查对比显示,估算的较大岩层体积的有效水力传导率根据测量尺度可以增加、降低或者保持稳定。地下水管理中描述断裂岩层有效水力传导率时需要谨慎小心。

Resumo

Uma comparação da condutividade hidráulica sobre volumes de rocha cristalina da vez maiores foi conduzida na região fisiográfica do Piemonte, próximo a Bethesda, Maryland, EUA. Testes de injeção de fluido foram conduzidos em intervalos de poços, isolando assim fraturas estreitamente espaçadas. Testes de único furo foram conduzidos através de bombeamento em poços abertos, por 30 minutos, e um teste de interface foi conduzido através do bombeamento de um único poço, com consequente monitoramento de poços vizinhos por três dias. Uma estimativa da condutividade hidráulica ao longo de centenas de metros foi inferida através da simulação da entrada de água numa seção de 1 km de um túnel da Autoridade de Transito da Área Metropolitana de Washington. A estimativa da condutividade hidráulica na ordem de quilômetros foi obtida através da modelagem da bacia Rock Creek. A maior parte do fluxo de água subterrânea está confinada a relativamente poucas fraturas em certa localidade. Poços com aproximadamente 50 m de profundidade possuem uma ou duas fraturas altamente transmissíveis; a transmissividade das demais fraturas varia entre 5 ordens de magnitude. As estimativas de condutividade hidráulica sobre volumes crescentes de rocha variaram apenas metade de uma ordem de magnitude. Enquanto diversas investigações apontam para um crescimento da condutividade hidráulica associado ao crescimento da escala de medição, uma comparação com investigações selecionadas demonstra que a condutividade hidráulica efetiva estimada sobre crescentes volumes de rocha aumenta, permanece a mesma e diminui, em função da escala de medição. É necessária cautela ao se caracterizar a condutividade hidráulica efetiva de rochas fraturadas, para fins de gerenciamento de águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York, 567 pp

  • Bradbury KR, Rothchild ER (1985) A computerized technique for estimating the hydraulic conductivity of aquifers from specific capacity data. Ground Water 23(2):240–246

    Article  Google Scholar 

  • Capital Transit Consultants Inc (2001) Washington Metropolitan Area Transit Authority: preliminary water intrusion investigation Red Line Tunnel. Washington, DC, p 62

  • Clauser C (1992) Permeability of crystalline rocks. EOS Trans Am Geophys Union 73(21):233–238

  • Cleaves ET (1968) Piedmont and Coastal Plain geology along the Susquehanna aqueduct, Baltimore to Aberdeen. Report of Investigations no. 8, Maryland Geological Survey, Baltimore, MD, 45 pp

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Am Geophys Union Trans 27(4):526–534

    Article  Google Scholar 

  • Cushman JH, Bennethum LS, Hu BX (2002) A primer on upscaling tools for porous media. Adv Water Resour 25:1043–1067

    Article  Google Scholar 

  • Dagan G (1989) Flow and transport in porous formations. Springer, Berlin, 465 pp

  • Davis AM, Southworth S, Reddy JE, Schindler JS (2002) Geologic map database of the Washington DC Area featuring data from three 30 × 60 minute quadrangles: Frederick, Washington West, and Fredericksburg.US Geol Surv Open File Rep OFR-01-227

  • Drake AA (1998) Geologic map of the Kensington quadrangle, Montgomery County, Maryland.US Geol Surv Geologic Quadrangle Map GQ-1774, scale 1:24,000

  • Fleming AH, Drake AA, McCartan L (1994) Geologic map of the Washington West quadrangle, District of Columbia, Montgomery and Prince Georges counties, Maryland, and Arlington and Fairfax counties, Virginia.US Geol Surv Geologic Quadrangle Map GQ-1748, scale 1:24,000

  • Froelich AJ (1975) Contour map of the base of saprolite, Montgomery County, Maryland.US Geol Surv Miscell Invest Ser Map I-920-C, scale 1:62,500

  • Goodman RF, Moye DG, Schalkwyk AV, Javandel I (1965) Ground water inflows during tunnel driving. Eng Geol 2(1):39–56

    Google Scholar 

  • Greene EA, Shapiro AM, LaMotte AE (2004) Hydrogeologic controls on ground-water discharge to the Washington METRO subway tunnel near the Medical Center Station and Crossover, Montgomery County, Maryland. US Geol Surv Water Resour Invest Rep 03–4294, 33 pp

  • Harbaugh AW (2005) MODFLOW-2005, The U.S. Geological Survey modular ground-water model-the ground-water flow process. US Geol Surv Tech Methods 6-A16, variously paged

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open File Rep 00–92, 121 pp

  • Heath RC (1984) Ground-water regions of the United States. US Geol Surv Water Suppl Pap 2242, 78 pp

  • Hill MC, Banta ER, Harbaugh AW, Anderman ER (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model: user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs. US Geol Surv Open File Rep 00–184, 209 pp

  • Hsieh PA, Shapiro AM (1996) Hydraulic characteristics of fractured bedrock underlying the FSE well field at the Mirror Lake Site, Grafton County, NH. In: Morganwalp DW, Aronson DA (eds) U.S. Geological Survey Toxic Substances Hydrology Program: Proceedings of the Technical Meeting, Colorado Springs, CO, September 20–24, 1993. US Geol Surv Water Resour Invest Rep 94–4015, pp 127–130

  • Kruseman GP, de Ridder NA (1990) Analysis and evaluation of pumping test data, 2nd edn. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands, 377 pp

    Google Scholar 

  • Lei S (1999) An analytical solution for steady flow into a tunnel. Ground Water 37(1):23–26

    Article  Google Scholar 

  • Nastev M, Savard MM, Lapcevic P, Lefebvre R, Martel R (2004) Hydraulic properties and scale effects investigation in regional rock aquifers, south-western Quebec, Canada. Hydrogeol J 12(3):257–269

    Google Scholar 

  • National Research Council (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academy Press, Washington, DC, 551 pp

  • Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26(8):1749–1758

    Article  Google Scholar 

  • Neuman SP (1991) Reply to “Comment on ‘Universal scaling of hydraulic conductivities and dispersivities in geologic media’” by M. P. Anderson. Water Resour Res 27(6):1383–1384

    Article  Google Scholar 

  • Park K-H, Owatsiriwong A, Lee J-G (2008) Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: a revisit. Tunn Undergr Space Technol 23(2):206–209

    Article  Google Scholar 

  • Poeter EP, Hill MC, Banta ER, Mehl S, Christensen S (2005) UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation. US Geol Surv Tech Methods 6-A11, 283 pp

  • Sanchez-Vila X, Guadagnini A, Carrera J (2006) Representative hydraulic conductivities in saturated groundwater flow. Rev Geophys 44:RG3002. doi:10.1029/2005RG000169

  • Schulze-Makuch D, Cherkauer DS (1998) Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks. Hydrogeol J 6(2):204–215

    Article  Google Scholar 

  • Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37(6):904–919

    Article  Google Scholar 

  • Shapiro AM, Hsieh PA (1998) How good are estimates of transmissivity from slug tests in fractured rock? Ground Water 36(1):37–48

    Article  Google Scholar 

  • Shapiro AM, Hsieh PA, Burton WC, Walsh GJ (2007) Integrated multi-scale characterization of ground-water flow and chemical transport in fractured crystalline rock at the Mirror Lake Site, New Hampshire. In: Hyndman DW, Day-Lewis FD, Singha K (eds) Subsurface hydrology: data integration for properties and processes. American Geophysical Union, Washington, DC, pp 201–226

    Chapter  Google Scholar 

  • Sloto RA, Crouse MY (1996) HYSEP: a computer program fro streamflow hydrograph separation and analysis. US Geol Surv Water Resour Invest Rep 96–4040, 46 pp

  • Streltsova TD (1988) Well testing in heterogeneous formations. Wiley, New York, 413 pp

  • Theis CV, Brown RH, Meyers RR (1963) Estimating the transmissibility of aquifers from the specific capacity of wells, In: Bentall R (ed) Methods of Determining Permeability, Transmissibility, and Drawdown. US Geol Surv Water Suppl Pap 1536-I, pp 331–341

  • Tiedeman CR, Hsieh PA (2001) Assessing an open-well aquifer test in fractured crystalline rock. Ground Water 39(1):68–78

    Article  Google Scholar 

  • Tiedeman CR, Goode DJ, Hsieh PA (1997) Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake Area, Grafton County, New Hampshire. US Geol Surv Prof Pap 1572, 50 pp

  • Tiedeman CR, Goode DJ, Hsieh PA (1998) Characterizing a ground water basin in a New England mountain and valley terrain. Ground Water 36(4):611–620

    Article  Google Scholar 

  • Vidstrand P (2001) Comparison of upscaling methods to estimate hydraulic conductivity. Ground Water 39(3):401–407

    Article  Google Scholar 

  • Wen X-H, Gomez-Hernandez JJ (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. J Hydrol 183(1–2):ix–xxxii

    Article  Google Scholar 

  • Yager RM (2004) Effects of model sensitivity and nonlinearity on nonlinear regression of groundwater flow. Ground Water 42(3):390–400

    Article  Google Scholar 

  • Yager RM, Voss CI, Southworth S (2009) Comparison of alternative representations of hydraulic-conductivity anisotropy in folded fractured-sedimentary rock: modeling groundwater flow in the Shenandoah Valley (USA). Hydrogeol J 17:1111–1131

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions of Earl A. Greene (USGS, Baltimore, Maryland) for being an integral part of the design and implementation of the hydraulic testing conducted in bedrock boreholes. The authors also acknowledge the support of the staff of the Washington Metropolitan Area Transit Authority in providing access to the tunnel infrastructure and data associated with groundwater inflow into the Medical Center Station. This investigation was supported in part by National Research Program and the Groundwater Resources Program of the US Geological Survey. The authors also acknowledge the comments made by the anonymous reviewers and the editors of the journal in improving the content of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen M. Shapiro.

Appendix: nomenclature

Appendix: nomenclature

H L :

specified hydraulic conductivity imposed at the lateral boundaries of the cross-sectional groundwater model of inflow into the WMATA tunnel; the hydraulic head is representative of conditions of zero drawdown at the lateral boundaries of the model domain

K :

hydraulic conductivity

K D :

conductance of the drain cells in the cross-sectional groundwater model simulating inflow into the WMATA tunnel

K eff :

effective hydraulic conductivity defined at a specific measurement scale

K G :

hydraulic conductivity of the grout on the tunnel wall in the cross-sectional groundwater model simulating inflow into the WMATA tunnel

K rock :

hydraulic conductivity of the unweathered rock in the 3D model of groundwater flow in the Rock Creek watershed

K sapro :

hydraulic conductivity of the saprolite in the 3D model of groundwater flow in the Rock Creek watershed

K TI :

hydraulic conductivity of the rock from simulations of groundwater flow into the WMATA tunnel

K tunnel :

hydraulic conductivity of the WMATA tunnel wall in the 3D model of groundwater flow in the Rock Creek watershed

KVrock :

the ratio of the horizontal to vertical hydraulic conductivity in the unweathered rock in the 3D model of groundwater flow in the Rock Creek watershed

L :

horizontal dimension of the cross-sectional groundwater flow model used to simulate inflow into the WMATA tunnel

RCH:

groundwater recharge in the cross-sectional groundwater flow model used to simulate inflow into the WMATA tunnel

T :

transmissivity

W :

width of the tunnel wall in the cross-sectional groundwater flow model used to simulate inflow into the WMATA tunnel (assumed to be 1 m)

G :

grout thickness on the tunnel wall in the cross-sectional groundwater flow model used to simulate inflow into the WMATA tunnel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, A.M., Ladderud, J.A. & Yager, R.M. Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger length dimensions. Hydrogeol J 23, 1319–1339 (2015). https://doi.org/10.1007/s10040-015-1285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1285-7

Keywords

Navigation