Hydrogeology Journal

, Volume 18, Issue 4, pp 945–958

Postaudit evaluation of conceptual model uncertainty for a glacial aquifer groundwater flow and contaminant transport model

Paper

DOI: 10.1007/s10040-009-0554-8

Cite this article as:
Lemke, L.D. & Cypher, J.A. Hydrogeol J (2010) 18: 945. doi:10.1007/s10040-009-0554-8

Abstract

Numerical groundwater flow and contaminant transport modeling incorporating three alternative conceptual models was conducted in 2005 to assess remedial actions and predict contaminant concentrations in an unconfined glacial aquifer located in Milford, Michigan, USA. Three alternative conceptual models were constructed and independently calibrated to evaluate uncertainty in the geometry of an aquitard underlying the aquifer and the extent to which infiltration from two manmade surface water bodies influenced the groundwater flow field. Contaminant transport for benzene, cis-DCE, and MTBE was modeled for a 5-year period that included a 2-year history match from July 2003 to May 2005 and predictions for a 3-year period ending in July 2008. A postaudit of model performance indicates that predictions for pumping wells, which integrated the transport signal across multiple model layers, were reliable but unable to differentiate between alternative conceptual model responses. In contrast, predictions for individual monitoring wells with limited screened intervals were less consistent, but held promise for evaluating alternative hydrogeologic models. Results of this study suggest that model conceptualization can have important practical implications for the delineation of contaminant transport pathways using monitoring wells, but may exert less influence on integrated predictions for pumping wells screened over multiple numerical model layers.

Keywords

PostauditConceptual modelsUncertaintyNumerical modelingUSA

Evaluation de l’incertitude d’un modèle conceptual des écouments d’un aquifère de sédiments glaciaires et d’un modèle de transport de contaminant suite à un audit

Resume

La modélisation numérique des écoulements et du transport de contaminant comprenant trois modèles conceptuels a été réalisée en 2005 afin d’évaluer des actions de remédiation et de prédire les concentrations de contaminant dans un aquifère libre en contexte sédimentaire glaciaire, à Milford dans l’état du Michigan aux Etats Unis d’Amérique. Les trois modèles conceptuels ont été élaborés et calibrés de manière indépendante afin d’évaluer les incertitudes concernant la géométrie de l’aquitard sous jacent et de définir l’extension des infiltrations issues de deux plans d’eau artificiels et leur influence sur l’organisation des eaux souterraines. Le transport de contaminants tels que le benzène, le cis-DCE (cis-1,2-dichloro-ethène) et le MTBE (méthyle-tert-butyle-éther) a été modélisé pour une période de 5 ans comprenant une comparaison avec un historique de 2 ans (Juillet 2003 à Mai 2005) et des prévisions pour une période de trois ans s’achevant en juillet 2008. Un audit de la performance des modèles indique que les prévisions pour les pompages aux puits, qui intégraient le signal du transport au sein de modèles multicouche étaient fiables, mais incapables de différencier les réponses des différents modèles conceptuels. Par opposition, les prévisions au niveau des piézomètres pris individuellement avec des intervalles de crépines limitées étaient moins cohérentes, mais semblent prometteuses pour l’évaluation des différentes options de modélisation. Les résultats de cette étude suggèrent que la conceptualisation d’un modèle peut avoir d’importantes implications pratiques pour la délimitation des lignes d’écoulement des contaminants transportés en ayant recours à des forages d’observation, mais exercent moins d’influence sur les prévisions intégrées des modèles multi-couches pour les puits de pompage crépinés.

Evaluación postauditoría de la incerteza de un modelo conceptual para un modelo de flujo de agua subterránea y transporte de contaminante de un acuífero glacial

Resumen

En 2005 se llevó a cabo un modelado numérico de flujo subterráneo y transporte de contaminantes incorporando tres modelos conceptuales alternativos para evaluar las acciones de remediación y predecir las concentraciones de contaminantes en un acuífero glacial no confinado localizado en Milford, Michigan, EEUU. Tres modelos conceptuales alternativos fueron construidos y calibrados independientemente para evaluar incertidumbres en la geometría de un acuitardo subyacente al acuífero y el grado en que la infiltración de dos cuerpos de aguas superficiales artificiales influyó en el campo de flujo de aguas subterráneas. Se modeló el transporte de contaminantes para benceno, cis-DCE, y MTBE para un período de 5 años que incluyó una comparación histórica de 2 años a partir de Julio de 2003 hasta mayo de 2005 y las predicciones para un período de 3 años finalizando en julio de 2008. Una postauditoría del rendimiento del modelo indica que las predicciones para pozos de bombeo, que integraron a las señales de transporte a través de un modelo de múltiples capas, fueron confiables pero incapaces para diferenciar entre las respuestas de los modelos conceptuales alternativos. En contraste, las predicciones para pozos de monitoreo individuales con intervalos limitados de filtros fueron menos consistentes, pero resultaron prometedores para evaluar modelos hidrogeológicos alternativos. Los resultados de este estudio sugieren que el modelo conceptual puede tener importantes implicancias prácticas para delinear las trayectorias de transporte de contaminantes usando pozos de monitoreo, pero pueden ejercer menos influencia sobre predicciones integradas para pozos de bombeo con filtros en modelos numéricos de múltiples capas.

冰川堆积含水层地下水流和污染物运移模拟中概念模型不确定性的后评价

摘要

2005年,联合三个比对概念模型对地下水流和污染物运移进行了数值模拟, 用以评价美国密歇根州Milford一个潜水冰成含水层的修复效果并预测其中的污染物浓度。三个比对概念模型经分别校正, 以评价含水层下伏隔水层的几何形态和二个人工地表水体的入渗对地下水流场的影响程度的不确定性。 对苯、cis-DCE、MTBE进行了五年的污染物运移模拟, 包括两年 (2003年7月至2005年5月) 的历史拟合和三年 (至2008年7月) 的预测。模型性能的后评价表明, 对综合多个模拟层运移信号的抽水井的预测是可靠的, 但是无法区分各比对概念模型的响应。相反, 对局部取水的个别监测井的预测很少一致, 但这为比对水文地质模型的评价提供了可能。本次研究结果表明, 模型概化对利用监测井描绘污染物运移路径具有重要的实际意义, 但对从多层取水井的数值模拟综合预测影响较小。

Avaliação a posteriori da incerteza do modelo conceptual para o fluxo de água subterrânea e do modelo de transporte de contaminantes num aquífero glacial

Resumo

Em 2005 foram desenvolvidas três alternativas de modelos conceptuais de fluxo de água subterrânea e de transporte de contaminantes, com o objectivo de estabelecer acções de remediação e prever a concentração de contaminantes num aquífero glacial não confinado localizado em Milford, Michigan, EUA. Três modelos conceptuais foram construídos e calibrados independentemente, para avaliar a incerteza da geometria de um aquitardo subjacente ao aquífero e avaliar a extensão em que a infiltração a partir de duas massas de água superficiais, construídas, influenciou o fluxo da água subterrânea. Foi modelado o transporte de contaminantes para benzeno, cis-DCE, e MTBE, para um período de 5 anos, que incluiu a evolução histórica ao longo de 2 anos, de Julho de 2003 a Maio de 2005 e as previsões para um período de 3 anos, terminando em Julho de 2008. Uma verificação posterior do desempenho do modelo indicou que as previsões para furos de bombagem, que integravam o marcador de transporte através de múltiplas camadas do modelo, eram fiáveis, mas incapazes de diferenciar entre respostas alternativas do modelo conceptual. Pelo contrário, as previsões para furos individuais de monitorização com intervalos de tubos-ralo limitados eram menos consistentes, mas são promissoras para avaliar modelos hidrogeológicos alternativos. Os resultados deste estudo sugerem que a conceptualização do modelo pode ter implicações práticas importantes para a delineação dos percursos de transporte de contaminantes usando furos de monitorização, mas podem exercer menos influência em previsões integradas para furos de bombagem com tubos-ralo situados ao longo de múltiplas camadas objecto de modelos numéricos.

Supplementary material

10040_2009_554_MOESM1_ESM.pdf (1.7 mb)
Fig. S1Steady state groundwater flow model calibration plot showing calculated versus observed head values for Rose Lake (RL-) and DLZ (DLZ-MW-) monitoring wells for conceptual Model A: Regional Aquitard (elevations given in feet above mean sea level; 1 foot = 0.3048 meters) (PDF 1732 kb)
10040_2009_554_MOESM2_ESM.pdf (1.7 mb)
Fig. S2Steady state groundwater flow model calibration plot showing calculated versus observed head values for Rose Lake (RL-) and DLZ (DLZ-MW-) monitoring wells for conceptual Model B: Extended Aquifer (PDF 1732 kb)
10040_2009_554_MOESM3_ESM.pdf (1.7 mb)
Fig. S3Steady state groundwater flow model calibration plot showing calculated versus observed head values for Rose Lake (RL-) and DLZ (DLZ-MW-) monitoring wells for conceptual Model C: Reduced Infiltration (PDF 1732 kb)
10040_2009_554_MOESM4_ESM.pdf (1.7 mb)
Fig. S4Predicted and observed heads versus time in DLZ- monitoring wells for conceptual model A: Regional Aquitard (PDF 1732 kb)
10040_2009_554_MOESM5_ESM.pdf (1.7 mb)
Fig. S5Static water level elevations for monitoring wells at the site. Data from sample events with suspected measurement errors have been excluded (PDF 1732 kb)
10040_2009_554_MOESM6_ESM.pdf (1.7 mb)
Fig. S6Initial benzene concentration (ppb) - Shallow aquifer zone (PDF 1732 kb)
10040_2009_554_MOESM7_ESM.pdf (1.7 mb)
Fig. S7Initial benzene concentration (ppb) - Intermediate aquifer zone (PDF 1732 kb)
10040_2009_554_MOESM8_ESM.pdf (1.7 mb)
Fig. S8Initial benzene concentration (ppb) - Deep 1 and Deep 2 aquifer zones (PDF 1732 kb)
10040_2009_554_MOESM9_ESM.pdf (1.7 mb)
Fig. S9Initial MTBE concentration (ppb) - Shallow aquifer zone (PDF 1732 kb)
10040_2009_554_MOESM10_ESM.pdf (1.7 mb)
Fig. S10Initial MTBE concentration (ppb) - Intermediate aquifer zone (PDF 1732 kb)
10040_2009_554_MOESM11_ESM.pdf (1.7 mb)
Fig. S11Initial MTBE concentration (ppb) - Deep 1 aquifer zone (PDF 1732 kb)
10040_2009_554_MOESM12_ESM.pdf (1.7 mb)
Fig. S12Initial MTBE concentration (ppb) - Deep 2 aquifer zone (PDF 1732 kb)
10040_2009_554_MOESM13_ESM.pdf (1.7 mb)
Fig. S13Initial cDCE concentration (ppb) - Shallow aquifer zone (PDF 1732 kb)
10040_2009_554_MOESM14_ESM.pdf (1.7 mb)
Fig. S14Initial cDCE concentration (ppb) - Intermediate aquifer zone (PDF 1732 kb)
10040_2009_554_MOESM15_ESM.pdf (1.7 mb)
Fig. S15Initial cDCE concentration (ppb) - Deep 1 aquifer zone (PDF 1732 kb)
10040_2009_554_MOESM16_ESM.pdf (1.7 mb)
Fig. S16Initial cDCE concentration (ppb) - Deep 2 aquifer zone (PDF 1732 kb)

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of GeologyWayne State UniversityDetroitUSA