Skip to main content
Log in

Ending groundwater overdraft in hydrologic-economic systems

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater overdraft occurs when extraction exceeds both natural and induced aquifer recharge over long periods. While ultimately unsustainable and invariably having detrimental effects, overdrafting aquifers is common and may be temporarily beneficial within a long-term water management strategy. Once a region chooses to end overdrafting, water management must change if increased water scarcity is to be avoided. Integrated water-management models allow aquifers and overdraft to be analyzed as part of a regional water-supply system. Incorporating economics into the model establishes a framework for evaluating the costs and effects of groundwater management actions on the entire system. This economic-engineering approach is applied in a case study of the Tulare Basin in California, USA, where previous economic studies showed optimal pumping depths have been reached. A hydro-economic optimization model is used to study the economic effects and water management actions that accompany ending overdraft. Results show that when overdraft is prohibited, groundwater banking using conjunctive-use infrastructure built between 1990 and 2005 largely annuls the cost of not overdrafting. The integrated economic-engineering approach quantifies effects of groundwater policies on complex regional water-resource systems and suggests promising strategies for reducing the economic costs of ending aquifer overexploitation.

Résumé

La surexploitation de l’eau souterraine intervient lorsque le prélèvement dépasse la recharge à la fois naturelle et induite de l’aquifère sur de longues périodes.Quoique non durable en fin de compte et ayant invariablement des conséquences préjudiciables, surexploiter les aquifères est courant et peut être avantageux temporairement dans une stratégie de gestion de l’eau à long terme. Une fois qu’une région choisit de mettre fin à la surexploitation, la gestion de l’eau doit changer si une rareté accrue de l’eau doit être évitée. Les modèles de gestion intégrés de l’eau permettent aux aquifères et à la surexploitation d’être analysés en tant qu’éléments d’un système régional d’alimentation en eau. L’incorporation de l’économique dans le modèle établit un cadre pour évaluer les coûts et les conséquences des actions de gestion de l’eau souterraine sur le système dans son entier. Cette approche d’ingénierie économique est appliquée à une étude de cas du Basin de Tulare en Californie, U.S.A., où des études économiques antérieures ont montré que des profondeurs optimales de pompage ont été atteintes. Un modèle d’optimisation hydro-économique est utilisé pour étudier les conséquences économiques et les actions de gestion de l’eau qui accompagnent l’arrêt de la surexploitation. Les résultats montrent que lorsque la surexploitation est interdite, le prélèvement d’eau souterraine mettant en œuvre l’infrastructure pour l’emploi conjoint des eaux superficielles et souterianes construites entre 1990 et 2005, annule dans une large mesure le coût de l’arrêt de la surexploitation. L’approche intégrée d’ingénierie économique quantifie les conséquences des politiques de l’eau souterraine sur des systèmes régionaux complexes de ressources en eau et suggère des stratégies prometteuses pour la réduction des coûts économiques résultant de l’arrêt de la surexploitation de l’aquifère.

Resumen

La sobre-explotación de aguas subterráneas ocurre cuando la extracción excede tanto la recarga natural como inducida del acuífero en períodos prolongados. Aunque en última instancia es una práctica no sustentable y que invariablemente tiene efectos perjudiciales, la sobre-explotación de acuíferos es frecuente y puede ser temporalmente beneficiosa dentro de una estrategia de corto plazo de gestión del agua. Cuando en una región se decide finalizar con la sobre-explotación, la gestión del recurso debe cambiar a fin de evitar la escasez de agua. Los modelos de gestión integrada de los recursos hídricos permiten analizar los acuíferos y la sobre-explotación como partes de un sistema regional de abastecimiento de agua. La incorporación en el modelo de aspectos económicos establece el marco para evaluar los costos y efectos sobre el sistema completo de acciones relacionadas con la gestión del agua subterránea. Esta aproximación económica-ingenieril se aplica a un caso de estudio en la Cuenca Tulare (California, USA), donde los estudios económicos previos demuestran que se han alcanzado profundidades óptimas de bombeo. Se usa un modelo de optimización hidro-económico para estudiar los efectos económicos y las medidas de gestión que se relacionan con la finalización de la sobre-explotación. Los resultados muestran que cuando se prohíbe la sobre-explotación, el almacenamiento de agua subterránea usando infraestructura de uso conjunto construida entre 1990 y 2005, anula en gran parte el costo de no sobre-explotar. La aproximación integrada económica-ingenieril cuantifica el efecto de políticas hídricas en sistemas regionales de recursos hídricos y sugiere estrategias promisorias para reducir los costos económicos de la finalización de la sobre-explotación de acuíferos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrews ES, Chung FI, Lund JR (1992) Multilayered, priority-based simulation of conjunctive facilities. J Water Resour Plan Manage 118:32–53

    Article  Google Scholar 

  • Blomquist W, Schlager E, Heikkila T (2004) Common waters, diverging streams, linking institutions and water management in Arizona, California, and Colorado. Resources for the Future Press, Washington, DC

    Google Scholar 

  • Bredehoeft JD (1997) Safe yield and the water budget myth. Ground Water 35:929

    Article  Google Scholar 

  • Bredehoeft JD (2002) The water budget myth revisited: Why hydrogeologists model. Ground Water 40:340–345

    Article  Google Scholar 

  • Bredehoeft JD, Young RA (1970) The temporal allocation of ground water: a simulation approach. Water Resour Res 6:3–21

    Article  Google Scholar 

  • Bredehoeft JD, Young RA (1983) Conjunctive use of groundwater and surface-water for irrigated agriculture: risk-aversion. Water Resour Res 19:1111–1121

    Article  Google Scholar 

  • Bredehoeft JD, Papadopulos SS, Cooper Jr HH (1982) The water budget myth, scientific basis of water resource management. National Academy Press, Washington, DC, pp 51–57

    Google Scholar 

  • Bredehoeft JD, Reichard EG, Gorelick SM (1995) If it works, don’t fix it: benefits from regional groundwater management. In: El-Kadi AI (ed) Groundwater models for resources analysis and management. CRC, Boca Raton, FL, pp 103–124

    Google Scholar 

  • Brill TC, Burness HS (1994) Planning versus competitive rates of groundwater pumping. Water Resour Res 30:1873–1880

    Article  Google Scholar 

  • Brown G, Deacon R (1972) Economic optimization of a single-cell aquifer. Water Resour Res 8:557–564

    Article  Google Scholar 

  • Brozovic N, Sunding D, Zilberman D (2006) Optimal management of groundwater over space and time. In: Goetz R, Berga D (eds) Frontiers in water resource economics. Springer, Berlin, pp 109–136

  • Burt O (1964) Optimal resource use over time with an application to ground water. Manage Sci 11:80–93

    Article  Google Scholar 

  • Cai XM, McKinney DC, Lasdon LS (2003) Integrated hydrologic-agronomic-economic model for river basin management. J Water Resour Plan Manage 129:4–17

    Article  Google Scholar 

  • CDWR (California Department of Water Resources) (1994) The California water plan update, 1993, Bulletin 160-93, CDWR, Sacramento, CA

  • CDWR (California Department of Water Resources) (2005) California water plan update, vol 3, chapter 8, Tulare Lake Hydrologic Region, CDWR, Sacramento, CA

  • CDWR (California Department of Water Resources) (2006) Planning and local assistance: groundwater level data. CDWR, Sacramento, CA. http://wdl.water.ca.gov/gw/. Cited 10 Dec 2006

  • Custodio E (2002) Aquifer overexploitation: What does it mean? Hydrogeol J 10:254–277

    Article  Google Scholar 

  • Custodio E, Llamas R (2003) Intensive use of groundwater: introductory considerations. In: Llamas R, Custodio E (eds) Intensive use of groundwater. Swets, Lisse, The Netherlands

    Google Scholar 

  • Draper AJ (2001) Implicit stochastic optimization with limited foresight for reservoir systems, PhD Thesis, Dept. Civil and Env. Eng., University of California at Davis, USA

  • Draper AJ, Jenkins MW, Kirby KW, Lund JR, Howitt RE (2003) Economic-engineering optimization for California water management. J Water Resour Plan Manage 129:155–164

    Article  Google Scholar 

  • Feinerman E, Knapp KC (1983) Benefits from groundwater-management: magnitude, sensitivity, and distribution. Am J Agric Econ 65:703–710

    Article  Google Scholar 

  • Gardner DB (1979) Economic issues of groundwater management. Proceedings of the 12th Biennial Conference on Ground Water, Report no. 45, California Water Resources Center, Riverside, CA, pp 163–169

    Google Scholar 

  • Gisser M (1983) Groundwater: focusing on the real issue. J Polit Econ 91:1001–1027

    Article  Google Scholar 

  • Gisser M, Sanchez DA (1980) Competition versus optimal-control in groundwater pumping. Water Resour Res 16:638–642

    Article  Google Scholar 

  • Harou JJ, Lund JR (2007) Economic and water management effects of a no overdraft policy: California’s Tulare Basin. In: Ragone S, Hernández-Mora N, de la Hera A, Bergkamp G, McKay J (eds) The global importance of groundwater in the 21st Century: proceedings of the International Symposium on Groundwater Sustainability. National Groundwater Association, Westerville, Ohio, USA

    Google Scholar 

  • Hotelling H (1931) The economics of exhaustible resources. J Polit Econ 39:137–175

    Article  Google Scholar 

  • Howitt RE (1979) Is overdraft always bad? Proceedings of the 12th Biennial Conference on Ground Water. Report no. 45, California Water Resources Center, Riverside, CA, pp 50–61

    Google Scholar 

  • Howitt RE, Ward KB, Msangi SM (2001) Appendix A: statewide water and agricultural production model. In: Jenkins MW et al. (eds) Improving California water management: optimizing value and flexibility. Report No. 01-1, Center for Environmental and Water Resources Engineering, University of California at Davis, CA

  • Jenkins MW (1991) Yolo county, California’s water supply system, conjunctive use without management, MSc degree project, University of California at Davis, USA

  • Jenkins MW, Howitt RE, Lund JR, Draper AJ, Tanaka SK, Ritzema RS, Marques GF, Msangi SM, Newlin BD, Van Lienden BJ, Davis MD, Ward KB (2001) Improving california water management, optimizing value and flexibility. Report no. 01-1, Center for Environmental and Water Resources Engineering, University of California at Davis, CA

  • Johnston RH (1997) Sources of water supplying pumpage from regional aquifer systems of the United States. Hydrogeol J 5:54–63

    Article  Google Scholar 

  • Kendy E (2003) The false promise of sustainable pumping rates. Ground Water 41:2–4

    Article  Google Scholar 

  • KFMC (Kern Fan Monitoring Committee) (2005) The 2001 Kern Fan area operations and monitoring report, KFMC, Bakersfield, CA

  • Knapp KC, Olson LJ (1995) The Economics of conjunctive groundwater-management with stochastic surface supplies. J Environ Econ Manage 28:340–356

    Article  Google Scholar 

  • Knapp K, Vaux HJ (1982) Barriers to effective groundwater-management: the California case. Ground Water 20:61–66

    Article  Google Scholar 

  • Knapp KC, Weinberg M, Howitt R, Posnikoff JF (2003) Water transfers, agriculture, and groundwater management: a dynamic economic analysis. J Environ Manage 67:291–301

    Article  Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320

    Article  Google Scholar 

  • Koundouri P (2004a) Potential for groundwater management, Gisser-Sanchez effect reconsidered. Water Resour Res 40:13

    Google Scholar 

  • Koundouri P (2004b) Current issues in the economics of groundwater resource management. J Econ Surv 18:703–740

    Article  Google Scholar 

  • Kretsinger V, Narasimhan TN (2006) California’s evolution toward integrated regional water management: a long-term view. Hydrogeol J 14:407–423

    Article  Google Scholar 

  • Labadie JW (2004) Optimal operation of multireservoir systems: state-of-the-art review. J Water Resour Plan Manage 130(2):93–111

    Article  Google Scholar 

  • Lettenmaier DP, Burges SJ (1982) Cyclic-storage: a preliminary assessment. Ground Water 20:278–288

    Article  Google Scholar 

  • Llamas R, Custodio E (2003) Intensive use of groundwater, a new situation which demands proactive action. In: Llamas R, Custodio E (eds) Intensive use of groundwater. Swets, Lisse, The Netherlands

    Google Scholar 

  • Llamas MR, Martinez-Santos P (2005) Intensive groundwater use, silent revolution and potential source of social conflicts. J Water Resour Plan Manage 131:337–341

    Article  Google Scholar 

  • McCarl BA, Dillon CR, Keplinger KO, Williams RL (1999) Limiting pumping from the Edwards Aquifer: an economic investigation of proposals, water markets, and spring flow guarantees. Water Resour Res 35:1257–1268

    Article  Google Scholar 

  • Meillier LM, Clark JF, Loaiciga H (2001) Hydrogeological study and modeling of the Kern Water Bank, University of California Water Resources Center, University of California at Davis, CA

  • Molle F (2003) Development trajectories of river basins, a conceptual framework. Research Report 72, International Water Management Institute, Battaramulla, Sri Lanka

  • Moreaux M, Reynaud A (2004) Optimal joint management of a coastal aquifer and a substitute resource. Water Resour Res 40:10

    Article  Google Scholar 

  • Nishikawa T, Densmore JN, Martin P, Matti J (2003) Evaluation of the source and transport of high nitrate concentrations in ground water, Warren Subbasin, California. US Geol Surv Water-Resour Invest Rep 03-4009

  • Noel JE, Howitt RE (1982) Conjunctive multibasin management: an optimal-control approach. Water Resour Res 18:753–763

    Article  Google Scholar 

  • Noel JE, Gardner BD, Moore CV (1980) Optimal regional conjunctive water management. Am J Agric Econ 62:489–498

    Article  Google Scholar 

  • NRC - National Research Council (1997) Valuing groundwater, economic concepts and approaches. National Academy Press, Washington, DC

    Google Scholar 

  • O’mara GT, Duloy JH (1984) Modeling efficient water allocation in a conjunctive use regime: the Indus Basin of Pakistan. Water Resour Res 20(11):1489–1498

    Article  Google Scholar 

  • Planert M, Williams JS (1995) Groundwater atlas of the United States, California, Nevada. HA 730-B, US Geological Survey, Reston, VA

  • Provencher B, Burt O (1993) The externalities associated with the common property exploitation of groundwater. J Environ Econ Manage 24:139–158

    Article  Google Scholar 

  • Provencher B, Burt O (1994) Approximating the optimal groundwater pumping policy in a multiaquifer stochastic conjunctive use setting. Water Resour Res 30:833–843

    Article  Google Scholar 

  • Pulido-Velázquez M, Marques GF, Jenkins MW, Lund JR (2003) Conjunctive use of ground and surface waters: classical approaches and California’s examples. Proceedings of the XI World Water Congress, CD-ROM, Madrid, Spain, October 2003

  • Pulido-Velazquez M, Jenkins MW, Lund JR (2004) Economic values for conjunctive use and water banking in southern California. Water Resour Res 40(3), W03401

  • Pulido-Velazquez M, Andreu J, Sahuquillo A (2006) Economic optimization of conjunctive use of surface water and groundwater at the basin scale. J Water Resour Plan Manage 132:454–467

    Article  Google Scholar 

  • Reichard EG (1987) Hydrologic influences on the potential benefits of basinwide groundwater-management. Water Resour Res 23:77–91

    Article  Google Scholar 

  • Reinelt P (2005) Seawater intrusion policy analysis with a numerical spatially heterogeneous dynamic optimization model. Water Resour Res 41(5)

  • SAIC (2003) Existing west (east) side conveyance and exchange facilities, technical memorandum for task 806 (807), Prepared for Friant Water User Authority, SAIC, Santa Barbara, CA

  • Schuck EC, Green GP (2002) Supply-based water pricing in a conjunctive use system: implications for resource and energy use. Resour Energy Econ 24:175–192

    Article  Google Scholar 

  • Sophocleous M (2003) Environmental implications of intensive groundwater use with special regard to streams and wetlands. In: Llamas R, Custodio E (eds) Intensive use of groundwater. Swets, Lisse, The Netherlands

    Google Scholar 

  • Theis CV (1940) The source of water derived from wells, essential factors controlling the response of an aquifer to development. Civil Eng 10:277–280

    Google Scholar 

  • Tsur Y (1990) The stabilization role of groundwater when surface-water supplies are uncertain: the implications for groundwater development. Water Resour Res 26:811–818

    Google Scholar 

  • Tsur Y, Graham-Tomasi T (1991) The buffer value of groundwater with stochastic surface-water supplies. J Environ Econ Manage 21:201–224

    Article  Google Scholar 

  • Tsur Y, Zemel A (1995) Uncertainty and irreversibility in groundwater resource-management. J Environ Econ Manage 29:149–161

    Article  Google Scholar 

  • USBR (US Department of the Interior, Bureau of Reclamation) (1997) Central Valley Project Improvement Act, Draft Programmatic Environmental Impact Statement. Documents and Model Runs (2 CD-ROMs). USBR, Sacramento, CA

  • USACE (US Army Corps of Engineers) (1999) HEC-PRM Package. Hydrologic Engineering Center, Davis, CA

    Google Scholar 

  • Vaux HJ (1985) Economic aspects of groundwater recharge. In: Asano T (ed) Artificial recharge of groundwater. Butterworth, Boston, MA, pp 703–718

  • Vaux HJ (1986) Water scarcity and gains from trade in Kern county, California. In: Frederick K (ed) Scarce water and institutional change. Resources for the Future, Washington, DC

  • Young RA (1992) Managing aquifer over-exploitation: economics and policies. In: Simmers I, Villarroya F, Rebollo LF (eds) Selected papers on aquifer overexploitation. Heise, Hannover, Germany, pp 199–222

    Google Scholar 

  • Young RA, Bredehoeft JD (1972) Digital-computer simulation for solving management problems of conjunctive groundwater and surface water systems. Water Resour Res 8:533–548

    Article  Google Scholar 

  • Zektser S, Loaiciga HA, Wolf JT (2005) Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States. Environ Geol 47:396–404

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the California Energy Commission while the first author was a graduate student at the University of California at Davis. The authors thank C. Brush, B. Wagner, V. Kretsinger and an anonymous reviewer for comments that improved the paper. T. Haslebacher is thanked for providing information and insights on local hydrogeology. We also thank G. Marques, M. Pulido-Velázquez, M. Jenkins, and S. Tanaka for useful discussions on conjunctive use and help with modeling conjunctive use for the Tulare Basin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien J. Harou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harou, J.J., Lund, J.R. Ending groundwater overdraft in hydrologic-economic systems. Hydrogeol J 16, 1039–1055 (2008). https://doi.org/10.1007/s10040-008-0300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0300-7

Keywords

Navigation