Skip to main content
Log in

Stochastic generation of virtual air pores in granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A computational method is described for the generation of virtual air pores with randomized features in granular materials. The method is based on the creation of a stack of two dimensional stochastically generated domains of packed virtual aggregate particles that are converted to three dimensions and made to intersected with one another. The three dimensional structure that is created is then sampled with an algorithm that detects the void space left between the intersected particles, which corresponds to the air void volume in real materials. This allows the generation of a map of the previously generated three dimensional model that can be used to analyse the topology of the void channels. The isotropy of the samples is here discussed and analysed. The air void size distribution in all the virtual samples generated in this study is described with the Weibull distribution and the goodness of fit is successfully evaluated with the Kolmogorov–Smirnov test. The specific surface of the virtual samples is also successfully compared to that of real samples. The results show that a stochastic approach to the generation of virtual granular materials based only on geometric principles is feasible and provides realistic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aligizaki, K.K.: Pore Structure of Cement-Based Materials. CRC Press, Boca Raton (2005)

    Google Scholar 

  2. Andrienko, Y.A., Brilliantov, N.V., Krapivsky, P.L.: Pattern formation by growing droplets: the touch-and-stop model of growth. J. Stat. Phys. (1994). doi:10.1007/BF02186870

    MathSciNet  Google Scholar 

  3. Baddeley, A.: Spatial Point Processes and Their Applications. http://www.apps.stat.vt.edu/leman/VTCourses/BaddeleyPointProcesses.pdf (2007). Accessed 23 Jun 2015

  4. Chen, J., Huang, B., Chen, F., Shu, X.: Application of discrete element method to superpave gyratory compaction. Road Mater. Pavement Des. 13, 480–500 (2012). doi:10.1080/14680629.2012.694160

    Article  Google Scholar 

  5. Chen, J., Huang, B., Shu, X.: Air-void distribution analysis of asphalt mixture using discrete element method. J. Mater. Civ. Eng. 25, 1375–1385 (2013). doi:10.1061/(ASCE)MT.1943-5533.0000661

    Article  Google Scholar 

  6. Chiarelli, A., Dawson, A.R., García, A.: Generation of virtual asphalt mixture porosity for computational modelling. Powder Technol. (2015). doi:10.1016/j.powtec.2015.01.070

    Google Scholar 

  7. Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 3rd edn. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  8. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009). doi:10.1137/070710111

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Feng, H., Pettinari, M., Hofko, B., Stang, H.: Study of the internal mechanical response of an asphalt mixture by 3-D discrete element modeling. Constr. Build. Mater. 77, 187–196 (2015). doi:10.1016/j.conbuildmat.2014.12.022

    Article  Google Scholar 

  10. Hossain, M., Scofield, L.: Porous pavement for control of highway run-off. Arizona Department of Transportation (1991)

  11. Hyman, J.D., Smolarkiewicz, P.K., Winter, C.L.: Heterogeneities of flow in stochastically generated porous media. Phys. Rev. E 85(056), 701 (2012). doi:10.1103/PhysRevE.86.056701

    Google Scholar 

  12. Jiang, F., Tsuji, T.: Changes in pore geometry and relative permeability caused by carbonate precipitation in porous media. Phys. Rev. E 90(053), 306 (2014). doi:10.1103/PhysRevE.90.053306

    Google Scholar 

  13. Kongkitkul, W., Musika, N., Tongnuapad, C., Jongpradist, P., Youwai, S.: Anisotropy in compressive strength and elastic stiffness of normal and polymer-modified asphalts. Soils Found. 54, 94–108 (2014). doi:10.1016/j.sandf.2014.02.002

    Article  Google Scholar 

  14. Kutay, M.E.: Modeling moisture transport in asphalt pavements. Ph.D. thesis, University of Maryland (2005)

  15. Lamond, J.F.: Significance of Tests and Properties of Concrete and Concrete-Making Materials. ASTM International, West Conshohocken (2006)

    Book  Google Scholar 

  16. Last, G., Penrose, M.D.: Percolation and limit theory for the poisson lilypond model. Random Struct. Algorithms 42, 226–249 (2013). doi:10.1002/rsa.20410

    Article  MathSciNet  MATH  Google Scholar 

  17. Masad, E., Jandhyala, V.K., Dasgupta, N., Somadevan, N., Shashidhar, N.: Characterization of air void distribution in asphalt mixes using X-ray computed tomography. J. Mater. Civ. Eng. 14, 122–129 (2002). doi:10.1061/(ASCE)0899-1561(2002)14:2(122)

    Article  Google Scholar 

  18. Ohser, J., Mücklick, F.: Statistical Analysis of Microstructures in Materials Science. Wiley, New York (2000)

    MATH  Google Scholar 

  19. Ohser, J., Schladitz, K.: 3D Images of Materials Structures: Processing and Analysis. Wiley, New York (2009)

  20. Ruiz, A., Alberola, R., Perez, F., Sanchez, B.: Porous asphalt mixtures in Spain. Transportation Research Record No. 1265, Porous Asphalt Pavements: An International Perspective, pp. 87–94 (2002)

  21. Schenker, I., Filser, F.T., Gauckler, L.J.: Stochastic generation of particle structures with controlled degree of heterogeneity. Granul. Matter 12, 437–446 (2010). doi:10.1007/s10035-010-0188-5

    Article  MATH  Google Scholar 

  22. Schneider, R., Weil, W.: Stochastic and Integral Geometry (Probability and Its Applications). Springer, New York (2008)

  23. Schöpfer, M.P., Abe, S., Childs, C., Walsh, J.J.: The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from dem modelling. Int. J. Rock Mech. Min. Sci. 46, 250–261 (2009). doi:10.1016/j.ijrmms.2008.03.009

    Article  Google Scholar 

  24. Siena, M., Riva, M., Hyman, J.D., Winter, C.L., Guadagnini, A.: Relationship between pore size and velocity probability distributions in stochastically generated porous media. Phys. Rev. E 89(013), 018 (2014). doi:10.1103/PhysRevE.89.013018

    Google Scholar 

  25. Tashman, L., Masad, E., D’Angelo, J., Bukowski, J., Harman, T.: X-ray tomography to characterize air void distribution in superpave gyratory compacted specimens. Int. J. Pavement Eng. 3, 19–28 (2002). doi:10.1080/10298430290029902a

    Article  Google Scholar 

  26. Thyagarajan, S., Tashman, L., Masad, E., Bayomy, F.: The heterogeneity and mechanical response of hot mix asphalt laboratory specimens. Int. J. Pavement Eng. 11, 107–121 (2010). doi:10.1080/10298430902730521

    Article  Google Scholar 

  27. Vasilyev, L., Raoof, A., Nordbotten, J.M.: Effect of mean network coordination number on dispersivity characteristics. Transp. Porous Media 95, 447–463 (2012). doi:10.1007/s11242-012-0054-5

    Article  MathSciNet  Google Scholar 

  28. Younger, K.: Evaluation of Porous Pavements Used in Oregon. http://ir.library.oregonstate.edu/xmlui/handle/1957/35565 (1994). Accessed 21 Jan 2015

Download references

Acknowledgments

The authors thank the University of Nottingham for the financial support provided for the Ph.D. of Andrea Chiarelli. The Ph.D. studies of the first author are funded by the University of Nottingham (A. García new lecturer’s award, no grant number).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chiarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiarelli, A., Dawson, A.R. & García, A. Stochastic generation of virtual air pores in granular materials. Granular Matter 17, 617–627 (2015). https://doi.org/10.1007/s10035-015-0585-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0585-x

Keywords

Navigation