Skip to main content
Log in

Experimental determination of friction coefficient and mobilization force for a laterally confined granular column

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The case of a cylindrical container filled with granular material is a basic situation where the presence of the cylindrical wall induces horizontal pressure and hence, shearing forces (caused by friction between the container wall and the granular bed). Under certain circumstances, a finite length of the granular column in a housing cylindrical container can stand in the vertical position unsupported at the bottom end, held only by the frictional forces at the wall. When an axial load is applied at one end of the bed and increased slowly, the whole granular column starts to slide at a critical load value, called herein the mobilization force. Since this scenario is of significant practical interest (e.g. in caissons construction or in the design of silos), the experimental determination of the related parameters is of great importance for the development of suitable simulation models. In this paper, experimental methodologies for in-situ measurement of the mobilization force and the Coulomb’s friction coefficient between the granular material and the wall of the housing cylinder are presented in detail. Practical and convenient experimental set-ups that require only a few pieces of readily available and easily operated test equipment are proposed to measure these parameters. Results from a series of example experiments conducted on a granular alumina bed packed in a rigid plastic cylinder illustrate the performance and validity of the proposed experimental methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Das, B.M.: Fundamentals of Geotechnical Engineering. Brooks/Cole, Monterey (2000)

  2. Nedderman, R.M.: Statics and Kinematics of Granular Materials. Cambridge University Press, Oxford (1992)

    Book  Google Scholar 

  3. Malla, R.B., Gopal, J.: Experimental and analytical studies of full-scale amberlite water de-ionizing bed for space applications. In: Proceedings of the 2002 ASCE Engineering Mechanics Division Conference (CD-ROM), ASCE, Reston, VA (2002)

  4. Malla, R.B., Gopal, J.: Load and deflection characteristics of water de-ionizing medium for space applications. In: Proceedings of the Space & Robotics 2002, ASCE, Reston. VA, 356 (2002)

  5. Malla, R.B., Anandakumar, G., Ahn J.: Experimental, numerical, and analytical studies of stress and displacement in a full-scale bed of activated alumina granular material for water processing in space life support system. J. Aerosp. Eng. 27(2), 336–346 (2012)

  6. Malla, R., Anandakumar, G.: Experimental studies of load–displacement behavior of water processing granular activated alumina packed beds for space life support systems. Habitation 11(4), 149–162 (2008)

    Article  Google Scholar 

  7. Malla, R.B., Schillinger, D.: Experimental determination of friction coefficient and mobilization force in granular material packed in a cylinder. In: Proceedings of the SEM 2007 Annual Conference (CD-ROM), SEM, Bethel, CT (2007)

  8. Jenike, A.W.: Storage and Flow of Solids. Bull. No. 123, Eng. Exp. Station. Univ. of Utah, Salt Lake City, UT (1970)

  9. Savage, S.: Modeling and granular material boundary value problems. In: Herrmann, H.J., Luding, S., Hovi, J.-P. (eds.) Physics of Dry Granular Media. Kluwer, Amsterdam (1998)

    Google Scholar 

  10. Duran, J.: Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials. Springer, Berlin (1999)

    Google Scholar 

  11. Ooi, J., Hopkins, M., Sture, S.: Advances in the mechanics of granular materials. J. Eng. Mech. ASCE 127(10), 970–1074 (2001)

    Article  Google Scholar 

  12. Kolymbas, D.: Constitutive Modelling of Granular Materials. Springer, Berlin (2000)

    Book  Google Scholar 

  13. McNamara, S., Garcia-Rojo, R., Herrmann, H.J.: The stress–strain curve of cyclic loading: microscopic, analytical results. In: Proceedings of the 5th Powders and Grains International Conference on the Micromechanics of Granular Media. Balkema, Leiden (2005)

  14. Janssen, H.A.: Versuche über Getreidedruck in Silozellen. Zeitung des Vereins Deutscher Ingenieure 39, 1045–1049 (1895)

    Google Scholar 

  15. Schillinger, D., Malla, R.B.: Continuum elastic solution for an axially loaded granular medium packed in a cylinder. In: Proceedings of the 2007 ASCE Engineering Mechanics Division Conference, ASCE, Blacksburg, VA (2007)

  16. Alcan Chemicals Inc., Cleveland, OH, http://www.alcan.chemicals.com, (2008). Accessed 28 Dec 2008

  17. Instron Inc., Norwood, MA, http://www.instron.us (2008). Accessed 28 Dec 2008

  18. Tekscan Inc.: FlexiForce User Manual. Boston, MA, http://www.tekscan.com, (2008). Accessed 28 Dec 2008

  19. Schillinger, D.: The Mobilization Force in a Confined Granular Column. M.S. Thesis, University of Connecticut, Storrs, CT (2006)

  20. Coulomb C.A.: Sur une application des régles de maximis & minimis à quelques problèmes de statique relatifs à l’architecture. Mém. Math. Acad. R. Sci. 7, 343–382 (1776)

  21. Brown, R.L., Richards, J.C.: Principles of Powder Mechanics. Pergamon Press, New York (1966)

    Google Scholar 

  22. Drescher, A.: Analytical Methods in Bin Load Analysis. Elsevier, New York (1991)

    Google Scholar 

  23. Schillinger, D., Malla, R.: Analytical elastic solution based on Fourier transforms for a laterally confined granular column. J. Eng. Mech. ASCE 134(11), 937–951 (2008)

    Article  Google Scholar 

  24. Bathe, K.-J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall, Upper-Saddle River (1996)

    Google Scholar 

  25. Kennedy, J.B., Neville, A.M.: Basic Statistical Methods for Engineers and Scientists, 3rd edn. Harper and Row, New York (1986)

    Google Scholar 

  26. Navidi, W.: Statistics for Engineers and Scientists, 2nd edn. McGraw Hill, New York (2008)

    Google Scholar 

  27. Microsoft Corporation: MS Excel. http://office.microsoft.com/en-us/excel/. Accessed 1 Oct 2014

  28. Poly Software International: PSI-Plot V. 10.5. http://www.polysoftware.com/psiplot.htm. Accessed 1 Oct 2014

  29. Chatterjee, S., Hadi, A.S., Price, B.: Regression Analysis by Example. Wiley, New York (2000)

  30. Dantu, P.: Contribution à l’étude mécanique et géométrique des milieux pulvérulents. In: Proceedings of the 4th International Conference on Soil Mechanical and Foundation Engineering, pp. 133–147 (1957)

  31. Travers, T., Ammi, M., Bideau, D., Gervois, A., Messager, J.-C., Troadec, J.-P.: Uniaxial compression of 2D packings of cylinders. Effects of weak disorder. Europhys. Lett. 4, 329–341 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Aeronautics and Space Administration (NASA), Washington, D.C. under its Experimental Program to Stimulate Competitive Research (EPSCoR) in Connecticut; Hamilton Sundstrand, Windsor Locks, CT; and the University of Connecticut, Storrs, CT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh B. Malla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malla, R.B., Schillinger, D. & Vila, L.J. Experimental determination of friction coefficient and mobilization force for a laterally confined granular column. Granular Matter 16, 843–855 (2014). https://doi.org/10.1007/s10035-014-0531-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0531-3

Keywords

Navigation