Skip to main content
Log in

Analytical solution of the \(\mu (I)-\)rheology for fully developed granular flows in simple configurations

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Using the \(\mu (I)\) continuum model recently proposed for dense granular flows, we study theoretically steady and fully developed granular flows in two configurations: a plane shear cell and a channel made of two parallel plates (Poiseuille configuration). In such a description, the granular medium behaves like a fluid whose viscosity is a function of the inertia. In the shear plane geometry our calculation predicts that the height of the shear bands scales with \(U_0^{1/4}P_0^{1/2},\,\mathrm{where }\,U_0\) is the velocity of the moving plate and \(P_0\) the pressure applied at its top. In the Poiseuille configuration, the medium is sheared between the lateral boundaries and a plug flow is located in the center of the channel. The size of the plug flow is found to increase for a decreasing pressure gradient. We show that, for small pressure gradient, the granular material behaves like a Bingham plastic fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Delannay, R., Louge, M., Richard, P., Taberlet, N., Valance, A.: Towards a theoretical picture of dense granular flows down inclines. Nat. Mater. 6, 99–108 (2007)

    Article  ADS  Google Scholar 

  2. Jenkins, J.T., Richman, M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28(12), 3485–3494 (1985)

    Article  ADS  MATH  Google Scholar 

  3. MiDi, G.D.R.: On dense granular flows. Eur. Phys. J. E Soft Matter Biol. Phys. 14, 341–365 (2004). doi:10.1140/epje/i2003-10153-0

    Article  Google Scholar 

  4. da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    Article  ADS  Google Scholar 

  5. Iordanoff, I., Khonsari, M.M.: Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime. J. Tribol. 126(1), 137–145 (2004)

    Article  MATH  Google Scholar 

  6. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  ADS  Google Scholar 

  7. Taberlet, N., Richard, P., Jenkins, J.T., Delannay, R.: Density inversion in rapid granular flows: the supported regime. Eur. Phys. J. E: Soft Matter Biol. Phys. 22(1), 17–24 (2007)

    Google Scholar 

  8. Yohannes, B., Hill, K.M.: Rheology of dense granular mixtures: particle-size distributions, boundary conditions, and collisional time scales. Phys. Rev. E 82, 061301 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  9. Lagrée, P.-Y., Staron, L., Popinet, S.: The granular column collapse as a continuum: validity of a two-dimensional navier-stokes model with a \(\mu (i)\)-rheology. J. Fluid Mech. 686, 378–408 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Savage, S.B.: The mechanics of rapid granular flows. In: Volume 24 of Advances in Applied Mechanics, pp. 289–366. Elsevier (1984)

  11. Ancey, C., Coussot, P., Evesque, P.: A theoretical framework for granular suspensions in a steady simple shear flow. J. Rheol. 43(6), 1673–1699 (1999)

    Article  ADS  Google Scholar 

  12. Jop, P., Forterre, Y., Pouliquen, O.: Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167–192 (2005)

    Article  ADS  MATH  Google Scholar 

  13. Cortet, P.-P., Bonamy, D., Daviaud, F., Dauchot, O., Dubrulle, B., Renouf, M.: Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow. EPL 88(1), 14001 (2009)

    Article  ADS  Google Scholar 

  14. Brodu, N., Richard, P., Delannay, R.: Shallow granular flows down flat frictional channels: steady flows and longitudinal vortices. Phys. Rev. E 87, 022202 (2013)

    Article  ADS  Google Scholar 

  15. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  16. Jenkins, J., Berzi, D.: Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granul. Matter 12, 151–158 (2010). doi:10.1007/s10035-010-0169-8

    Article  MATH  Google Scholar 

  17. Aranson, I.S., Tsimring, L.S.: Continuum description of avalanches in granular media. Phys. Rev. E 64, 020301 (2001)

    Article  ADS  Google Scholar 

  18. Josserand, C., Lagrée, P.-Y., Lhuillier, D.: Stationary shear flows of dense granular materials: a tentative continuum modelling. Eur. Phys. J. E Soft Matter Biol. Phys. 14, 127–135 (2004). doi:10.1140/epje/i2003-10141-4

    Article  Google Scholar 

  19. Mills, P., Loggia, D., Tixier, M.: Model for a stationary dense granular flow along an inclined wall. EPL 45(6), 733 (1999)

    Article  ADS  Google Scholar 

  20. Louge, M.Y.: Model for dense granular flows down bumpy inclines. Phys. Rev. E 67, 061303 (2003)

    Article  ADS  Google Scholar 

  21. Berzi, D., di Prisco, C.G., Vescovi, D.: Constitutive relations for steady, dense granular flows. Phys. Rev. E 84, 031301 (2011)

    Article  ADS  Google Scholar 

  22. Ribière, P., Richard, P., Delannay, R., Bideau, D., Toiya, M., Losert, W.: Effect of rare events on out-of-equilibrium relaxation. Phys. Rev. Lett. 95(26), 268001 (2005)

    Article  ADS  Google Scholar 

  23. Nichol, K., Zanin, A., Bastien, R., Wandersman, E., van Hecke, M.: Flow-induced agitations create a granular fluid. Phys. Rev. Lett. 104, 078302 (2010)

    Article  ADS  Google Scholar 

  24. Reddy, K.A., Forterre, Y., Pouliquen, O.: Evidence of mechanically activated processes in slow granular flows. Phys. Rev. Lett. 106, 108301 (2011)

    Google Scholar 

  25. Pouliquen, O., Forterre, Y.: A non-local rheology for dense granular flows. Phil. Trans. R. Soc. A 367, 5091–5107 (2009)

    Article  ADS  MATH  Google Scholar 

  26. Kamrin, K., Koval, G.: Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301 (2012)

    Article  ADS  Google Scholar 

  27. Börzsönyi, T., Ecke, R.E., McElwaine, J.N.: Patterns in flowing sand: understanding the physics of granular flow. Phys. Rev. Lett. 103(17), 178302 (2009)

    Article  ADS  Google Scholar 

  28. Holyoake, A.J., McElwaine, J.N.: High-speed granular chute flows. J. Fluid Mech. 710, 35–71 (2012)

    Article  ADS  MATH  Google Scholar 

  29. da Cruz, F.: Écoulement des grains sec: frottement et blocage. PhD thesis, École Nationale des Ponts et chaussées (2004)

  30. Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)

    Article  ADS  Google Scholar 

  31. Buckingham, E.: On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4, 345–376 (1914)

    Article  ADS  Google Scholar 

  32. Amarouchene, Y., Boudet, J.F., Kellay, H.: Dynamics and dunes. Phys. Rev. Lett. 86, 4286–4289 (2001)

    Article  ADS  Google Scholar 

  33. Komatsu, T.S., Inagaki, S., Nakagawa, N., Nasuno, S.: Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86, 1757–1760 (2001)

    Article  ADS  Google Scholar 

  34. Bouchaud, J.-P., Cates, M.E., Ravi Prakash, J., Edwards, S.F.: Hysteresis and metastability in a continuum sandpile model. Phys. Rev. Lett. 74, 1982–1985 (1995)

    Article  ADS  Google Scholar 

  35. Boutreux, T., Raphaël, E., de Gennes, P.-G.: Surface flows of granular materials: a modified picture for thick avalanches. Phys. Rev. E 58, 4692–4700 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  36. Taberlet, N., Richard, P., Henry, E., Delannay, R.: The growth of a super stable heap: an experimental and numerical study. EPL 68(4), 515–521 (2004)

    Article  ADS  Google Scholar 

  37. Mangeney, A., Tsimring, L.S., Volfson, D., Aranson, I.S., Bochut, F.: Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys. Res. Lett. 34, L22401 (2007)

    Article  ADS  Google Scholar 

  38. Taberlet, N., Richard, P., Delannay, R.: The effect of sidewall friction on dense granular flows. Comput. Math. Appl. 55(2), 230–234 (2008). Modeling Granularity, Modeling Granularity

    Article  MATH  Google Scholar 

  39. Crassous, J., Metayer, J.-F., Richard, P., Laroche, C.: Experimental study of a creeping granular flow at very low velocity. J. Stat. Mech. Theory Exp. 2008(03), P03009 (2008)

    Article  Google Scholar 

  40. Richard, P., Valance, A., Métayer, J.-F., Sanchez, P., Crassous, J., Louge, M., Delannay, R.: Rheology of confined granular flows: scale invariance, glass transition, and friction weakening. Phys. Rev. Lett. 101, 248002 (2008)

    Article  ADS  Google Scholar 

  41. Blumenfeld, R., Edwards, S., Schwartz, M.: da Vinci fluids, catch-up dynamics and dense granular fluids. Eur. Phys. J. E Soft Matter Biol. Phys. 32, 333–338 (2010). doi:10.1140/epje/i2010-10628-9

    Article  Google Scholar 

Download references

Acknowledgments

We are deeply indebted to J. T. Jenkins and D. Berzi for fruitful discussions. This work is supported by the Région Bretagne (CREATE SAMPLEO). M. T. is supported by the Région Bretagne (ARED Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Richard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tankeo, M., Richard, P. & Canot, É. Analytical solution of the \(\mu (I)-\)rheology for fully developed granular flows in simple configurations. Granular Matter 15, 881–891 (2013). https://doi.org/10.1007/s10035-013-0447-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0447-3

Keywords

Navigation