, Volume 6, Issue 4, pp 248-262

Segmentation and recognition of handwritten dates: an HMM-MLP hybrid approach

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract.

This paper presents an HMM-MLP hybrid system for segmenting and recognizing complex date images written on Brazilian bank checks. Through the recognition process, the system makes use of an HMM-based approach to segment a date image into subfields. Then the three obligatory date subfields (day, month, and year) are processed. A neural approach has been adopted to decipher strings of digits (day and year) and a Markovian strategy to recognize and verify words (month). The final decision module makes an accept/reject decision. We also introduce the concept of metaclasses of digits to reduce the lexicon size of the day and year and improve the precision of their segmentation and recognition. Experiments show interesting results on date recognition.

Received: 17 December 2002, Accepted: 16 July 2003, Published online: 17 November 2003
Correspondence to: Marisa Morita