, Volume 5, Issue 5, pp 425-447

Central Nervous System Embryogenesis and Its Failures

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

The well-orchestrated development of the central nervous system (CNS) requires highly integrated regulatory processes to ensure its precise spatial organization that provides the foundation for proper function. As emphasized in this review, the type, timing, and location of regulatory molecules influence the different stages of development from neuronal induction, regional specification, neuronal specification, and neuronal migration to axonal growth and guidance, neuronal survival, and synapse formation. The known molecular mechanisms are summarized from studies of invertebrates and lower vertebrates, in which we have learned more about the different ligands, receptors, transcription factors, and the intracellular signaling pathways that play specific roles in the different stages of development. Despite known molecular mechanisms of some disturbances, most of the clinical entities that arise from failures of CNS embryogenesis remain unexplained. As more novel genes and their functions are discovered, existing mechanisms will be refined and tenable explanations will be made. With these limitations, two specific clinical entities that have been relatively well studied, holoprosencephaly and neuronal migration defects, are discussed in more detail to illustrate the complexity of regulatory mechanisms that govern well-defined stages of CNS development.