Skip to main content
Log in

Vegetation Composition in Bogs is Sensitive to Both Load and Concentration of Deposited Nitrogen: A Modeling Analysis

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Changes in vegetation composition due to nitrogen deposition may influence the role of peatlands in the carbon cycle. The impact of nitrogen (N) on vegetation composition of the Mer Bleue Bog (Ontario) and the underlying mechanisms were studied using a coupled carbon (C) and nitrogen wetland model (PEATBOG). The model was applied to data from a long-term nutrient fertilization experiment and the results were compared with the observed C and N pools in plants, peat, and soil water after 8 years of fertilization with 1.6, 3.2, and 6.4 gN m−2 y−1 and additional phosphorus and potassium. The evaluated model was employed to simulate the vegetation dynamics in the peatland fertilized with different loads and concentrations of N. The model suggested a shift in plant functional types from moss-shrub dominated to graminoid dominated with increasing N load. Suppression of mosses by N fertilization was mitigated by daily deposition of N at a low concentration. Mosses became extinct in the simulations only when the concentration and load of N deposition were high, corroborating empirical results from the fertilization experiment. Tracking the deposited N in the system, the model indicated that it was primarily sequestered in the peat. Dissolved N concentrations in peat and export from the bog increased with N load and decreased with N concentration, leading to higher N uptake by vascular plants. The results further suggested that the observed detrimental effect of N on mosses was most likely due to toxicity caused by N uptake exceeding N assimilation. Exposure of mosses to high N concentrations in precipitation and evaporating water on moss tissues is thus a factor that needs attention when considering critical loads of N deposition on peatlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Aerts R, Decaluwe H, Konings H. 1992. Seasonal allocation of biomass and nitrogen in 4 Carex species from mesotrophic and eutrophic fens as affected by nitrogen supply. J Ecol 80(4):653–64.

    Article  Google Scholar 

  • Aerts R, Verhoeven JTA, Whigham DF. 1999. Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–81.

    Article  Google Scholar 

  • Armitage HF, Britton AJ, Wal R, Pearce IS, Thompson D, Woodin SJ. 2012. Nitrogen deposition enhances moss growth, but leads to an overall decline in habitat condition of mountain moss-sedge heath. Glob Chang Biol 18:290–300.

    Article  Google Scholar 

  • Ayres E, van der Wal R, Sommerkorn M, Bardgett RD. 2006. Direct uptake of soil nitrogen by mosses. Biol Lett 2:286–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basiliko N, Moore TR, Jeannotte R, Bubier JL. 2006. Nutrient input and carbon and microbial dynamics in an ombrotrophic bog. Geomicrobiol J 23(7):531–43.

    Article  CAS  Google Scholar 

  • Blodau C, Moore TR. 2002. Macroporosity affects water movement and pore water sampling in peat soils. Soil Sci 167:98–109.

    Article  CAS  Google Scholar 

  • Bridgham SD. 2002. Nitrogen, translocation and Sphagnum mosses. New Phytol 156:140–1.

    Article  Google Scholar 

  • Britton AJ, Fisher JM. 2010. Terricolous alpine lichens are sensitive to both load and concentration of applied nitrogen and have potential as bioindicators of nitrogen deposition. Environ Pollut 158:1296–302.

    Article  CAS  PubMed  Google Scholar 

  • Brown DH, Bates JW. 1990. Bryophytes and nutrient cycling. Bot J Linn Soc 104:129–47.

    Article  Google Scholar 

  • Bubier J, Smith R, Juutinen S, Moore TR, Minocha R, Long S, Minocha S. 2011. Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs. Oecologia 167:355–68.

    Article  PubMed  Google Scholar 

  • Bubier JL, Moore TR, Bledzki LA. 2007. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob Chang Biol 13:1168–86.

    Article  Google Scholar 

  • Bubier JL, Moore TR, Crosby G. 2006. Fine-scale vegetation distribution in a cool temperate peatland. Can J Bot 84:910–23.

    Article  Google Scholar 

  • Chong M, Humphreys E, Moore TR. 2012. Microclimatic response to increasing shrub cover and its effect on Sphagnum CO2 exchange in a bog. Ecoscience 19(1):89–97.

    Article  Google Scholar 

  • Curtis CJ, Emmett BA, Grant H, Kernan M, Reynolds B, Shilland E. 2005. Nitrogen saturation in UK moorlands: the critical role of bryophytes and lichens in determining retention of atmospheric N deposition. J Appl Ecol 42:507–17.

    Article  CAS  Google Scholar 

  • de Graaf MC, Bobbink R, Roelofs JM, Verbeek PM. 1998. Differential effects of ammonium and nitrate on three heathland species. Plant Ecol 135:185–96.

    Article  Google Scholar 

  • Dise NB, Ashmore MR, Belyazid S, Bobbink R, De Vries W, Erisman JW, Spranger T, Stevens C, van den Berg L. 2011. Nitrogen as a threat to European terrestrial biodiversity. In: The European nitrogen assessment. Cambridge University Press, Cambridge.

  • Eppinga MB, De Ruiter PC, Wassen MJ, Rietkerk M. 2009. Nutrients and hydrology indicate the driving mechanisms of peatland surface patterning. Am Nat 173:803–18.

    Article  PubMed  Google Scholar 

  • Fritz C, Lamers LPM, Muhammad Riaz, van den Berg LJL, Elzenga TJTM. 2014. Sphagnum mosses- masters of Efficient N-uptake while avoiding intoxication. PLoS One 9(1):e79991.

    Article  PubMed Central  PubMed  Google Scholar 

  • Granberg G, Grip H, Löfvenius MO, Sundh I, Svensson B, Nilsson M. 1999. A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires. Water Resour Res 35:3771–82.

    Article  Google Scholar 

  • Gunnarsson U, Malmer N, Rydin H. 2002. Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography 25:685–704.

    Article  Google Scholar 

  • Gunnarsson U, Rydin H. 2000. Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol 147:527–37.

    Article  CAS  Google Scholar 

  • Hájková P, Hájek M, Rybníček K, Jiroušek M, Tichý L, Králová Š, Mikulášková E. 2011. Long-term vegetation changes in bogs exposed to high atmospheric deposition, aerial liming and climate fluctuation. J Veg Sci 22:891–904.

    Article  Google Scholar 

  • Hautier Y, Niklaus PA, Hector A. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–8.

    Article  CAS  PubMed  Google Scholar 

  • Heijmans MMPD, Berendse F, Arp WJ, Masselink AK, Klees H, De Visser W, Van Breemen N. 2001. Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. J Ecol 89:268–79.

    Article  CAS  Google Scholar 

  • Heijmans MMPD, Klees H, de Visser W, Berendse F. 2002. Effects of increased nitrogen deposition on the distribution of 15N-labeled nitrogen between Sphagnum and vascular plants. Ecosystems 5:500–8.

    Article  CAS  Google Scholar 

  • Hilbert DW. 1990. Optimization of plant root: shoot ratios and internal nitrogen concentration. Ann Bot 66:91–9.

    CAS  Google Scholar 

  • Hogg P, Squires P, Fitter A. 1995. Acidification, nitrogen deposition and rapid vegetational change in a small valley mire in Yorkshire. Biol Conserv 71:143–53.

    Article  Google Scholar 

  • Juutinen S, Bubier JL, Moore TR. 2010. Responses of vegetation and ecosystem CO2 exchange to 9 years of nutrient addition at Mer Bleue bog. Ecosystems 13:874–87.

    Article  CAS  Google Scholar 

  • Krupa S. 2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environ Pollut 124:179–221.

    Article  CAS  PubMed  Google Scholar 

  • Lafleur PM. 2003. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob Biogeochem Cycles 17:1036.

    Article  Google Scholar 

  • Lamers LPM, Bobbink R, Roelofs JGM. 2001. Natural nitrogen filter fails in polluted raised bogs. Glob Chang Biol 6:583–6.

    Article  Google Scholar 

  • LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–9.

    Article  PubMed  Google Scholar 

  • Limpens J, Berendse F. 2003. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135:339–45.

    Article  CAS  PubMed  Google Scholar 

  • Limpens J, Berendse F, Klees H. 2003. N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–47.

    Article  Google Scholar 

  • Mäkipää R. 1998. Sensitivity of understorey vegetation to nitrogen and sulphur deposition in a spruce stand. Ecol Eng 10:87–95.

    Article  Google Scholar 

  • Malmer N, Svensson BM, Wallen B. 1994. Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobot Phytotaxon 29:483–96.

    Google Scholar 

  • Manninen S, Woods C, Leith ID, Sheppard LJ. 2011. Physiological and morphological effects of long-term ammonium or nitrate deposition on the green and red (shade and open grown) Sphagnum capillifolium. Environ Exp Bot 72:140–8.

    Article  CAS  Google Scholar 

  • Moore T, Blodau C, Turunen J, Roulet N, Richard PJH. 2004. Patterns of nitrogen and sulfur accumulation and retention in ombrotrophic bogs, eastern Canada. Glob Change Biol 11:356–67.

    Article  Google Scholar 

  • Moore T, Bubier JL, Frolking SE, Lafleur PM, Roulet NT. 2002. Plant biomass and production and CO2 exchange in an ombrotrophic bog. J Ecol 90:25–36.

    Article  Google Scholar 

  • Munzi S, Pisani T, Paoli L, Loppi S. 2010. Time- and dose-dependency of the effects of nitrogen pollution on lichens. Ecotoxicol Environ Saf 73:1785–8.

    Article  CAS  PubMed  Google Scholar 

  • Nordbakken JF. 2001. Fine-scale five-year vegetation change in boreal bog vegetation. J Veg Sci 12:771–8.

    Article  Google Scholar 

  • Nordin A, Gunnarsson U. 2000. Amino acid accumulation and growth of Sphagnum under different levels of N deposition. Ecoscience 7:474–80.

    Google Scholar 

  • Nordin A, Strengbom J, Witzell J, Näsholm T, Ericson L. 2005. Nitrogen deposition and the biodiversity of boreal forests: implications for the nitrogen critical load. AMBIO 34:20–4.

    PubMed  Google Scholar 

  • Pearce ISK, Van der Wal R. 2008. Interpreting nitrogen pollution thresholds for sensitive habitats: the importance of concentration versus dose. Environ Pollut 152:253–6.

    Article  CAS  PubMed  Google Scholar 

  • Pearce ISK, Woodin SJ, Van Der Wal R. 2003. Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition. New Phytol 160:145–55.

    Article  CAS  Google Scholar 

  • Phoenix GK, Emmett BA, Britton AJ, Caporn SJM, Dise NB, Helliwell R, Jones L, Leake JR, Leith ID, Sheppard LJ, Sowerby A, Pilkington MG, Rowe EC, Ashmore MR, Power SA. 2012. Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Chang Biol 18:1197–215.

    Article  Google Scholar 

  • Pitcairn C, Fowler D, Leith I, Sheppard L, Tang S, Sutton M, Famulari D. 2006. Diagnostic indicators of elevated nitrogen deposition. Environ Pollut 144:941–50.

    Article  CAS  PubMed  Google Scholar 

  • Porter EM, Bowman WD, Clark CM, Compton JE, Pardo LH, Soong JL. 2012. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity. Biogeochemistry 114:93–120.

    Article  Google Scholar 

  • Rice SK, Aclander L, Hanson DT. 2008. Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). Am J Bot 95:1366–74.

    Article  PubMed  Google Scholar 

  • Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J. 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Chang Biol 13:397–411.

    Article  Google Scholar 

  • Rudolph H, Voigt JU. 1986. Effects of NH4 +–N and NO3–N on growth and metabolism of Sphagnum magellanicum. Physiol Plant 66:339–43.

    Article  Google Scholar 

  • Saarnio S, Järviö S, Saarinen T, Vasander H, Silvola J. 2003. Minor changes in vegetation and carbon gas balance in a boreal mire under a raised CO2 or NH4NO3 supply. Ecosystems 6:0046–60.

    Article  CAS  Google Scholar 

  • Scanlon D, Moore T. 2000. Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Sci 165(2):153–60.

    Article  CAS  Google Scholar 

  • Sheppard L, Leith I, Leeson S, van Dijk N, Field C, Levy P. 2013. Fate of N in a peatland, Whim bog: immobilisation in the vegetation and peat, leakage into pore water and losses as N2O depend on the form of N. Biogeosciences 10:149–60.

    Article  Google Scholar 

  • Sheppard LJ, Leith ID, Crossley A, Van Dijk N, Fowler D, Sutton MA, Woods C. 2008. Stress responses of Calluna vulgaris to reduced and oxidised N applied under ‘real world conditions’. Environ Pollut 154:404–13.

    Article  CAS  PubMed  Google Scholar 

  • Sheppard LJ, Leith ID, Mizunuma T, Cape JN, Crossley A, Leeson S, Sutton MA, van Dijk N, Fowler D. 2011. Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: evidence from a long-term field manipulation. Glob Chang Biol 17:3589–607.

    Article  Google Scholar 

  • Sheppard LJ, Leith ID, Mizunuma T, Leeson S, Kivimaki S, Neil Cape J, van Dijk N, Leaver D, Sutton MA, Fowler D, Van den Berg LJL, Crossley A, Field C, Smart S. 2014. Inertia in an ombrotrophic bog ecosystem in response to 9 years’ realistic perturbation by wet deposition of nitrogen, separated by form. Glob Chang Biol 20:566–80. doi:10.1111/gcb.12357.

    Article  PubMed  Google Scholar 

  • Stevens CJ, Dise NB, Gowing DJG, Mountford JO. 2006. Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Glob Chang Biol 12:1823–33.

    Article  Google Scholar 

  • Thornley JHM. 1998. Grassland dynamics: an ecosystem simulation model. Wallingford: CAB international.

    Google Scholar 

  • Thornley JHM, Bergelson J, Parsons A. 1995. Complex dynamics in a carbon-nitrogen model of a grass–legume pasture. Ann Bot 75:79–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thornley JHM, Verberne ELJ. 1989. A model of nitrogen flows in grassland. Plant Cell Environ 12:863–86.

    Article  Google Scholar 

  • Tomassen H, Smolders AJ, Limpens J, Lamers LP, Roelofs JG. 2004. Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? J Appl Ecol 41:139–50.

    Article  CAS  Google Scholar 

  • Van Der Eerden LJ, Dueck TA, Berdowski JJM, Greven H, Van Dobben HF. 1991. Influence of ammonia and ammonium sulfate on heathland vegetation. Acta Bot Neerl 40:281–96.

    Google Scholar 

  • Van der Wal R, Pearce IS, Brooker RW. 2005. Mosses and the struggle for light in a nitrogen-polluted world. Oecologia 142:159–68.

    Article  PubMed  Google Scholar 

  • Vestgarden LS, Austnes K, Strand LT. 2010. Vegetation control on DOC, DON and DIN concentrations in soil water from a montane system, southern Norway. Boreal Environ Res 15:565–78.

    CAS  Google Scholar 

  • Vitt DH, Wieder K, Halsey LA, Turetsky M. 2003. Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta, Canada. The Bryologist 106:235–45.

    Article  Google Scholar 

  • Wang M, Murphy MT, Moore TR. 2013. Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog. Oecologia 174:365–77. doi:10.1007/s00442-013-2784-7.

    Article  Google Scholar 

  • Wang M, Moore TR. 2014. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems 17(4):673–84. doi:10.1007/s10021-014-9752-x.

    Article  Google Scholar 

  • Wendel S, Moore T, Bubier J, Blodau C. 2011. Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO2 concentrations in a northern bog. Biogeosciences 8:585–95. doi:10.5194/bg-8-585-2011.

    Article  CAS  Google Scholar 

  • Wiedermann MM, Nordin A, Gunnarsson U, Nilsson MB, Ericson L. 2007. Global change shifts vegetation and plant–parasite interactions in a boreal mire. Ecology 88:454–64.

    Article  PubMed  Google Scholar 

  • Williams B, Silcock D. 1997. Nutrient and microbial changes in the peat profile beneath Sphagnum magellanicum in response to additions of ammonium nitrate. J Appl Ecol 34:961–70.

    Article  CAS  Google Scholar 

  • Wu Y, Blodau C. 2013. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands. Geosci Model Dev Discuss 6:1599–688.

    Article  Google Scholar 

  • Xing Y, Bubier J, Moore T, Murphy M, Basiliko N, Wendel S, Blodau C. 2010. The fate of 15N-nitrate in a northern peatland impacted by long term experimental nitrogen, phosphorus and potassium fertilization. Biogeochemistry 103:281–96.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge useful discussions with J. Verhoeven, N. Dise, B. Svensson, B. Robroek, L. Bragazza, and P. E. Lindgren that helped clarify concepts in the model development. We further thank T. R. Moore, P. Lafleur, N. T. Roulet J. Bubier, S. Juutinen, E. R. Humphreys, and Yangping Xing for access to data related to the Mer Bleue Peatland that we used in the modeling effort. We thank Dr. D. Verseghy for improving the language of the manuscript. This study is part of the BiodivERsA-PeatBOG Project, whose German subproject was funded by the German Ministry of Education and Research (BMBF) Grant 01LC0819A to C. Blodau through ERA-net (European Union’s 6th Framework).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Blodau.

Additional information

Author contributions

Yuanqiao Wu conceived the key ideas, developed and implemented modeling algorithms, designed and conducted the modeling experiments, analyzed the data and wrote the manuscript. C. Blodau identified the original research questions, provided ideas for model development and contributed to data analysis, interpretation of results and writing of the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Blodau, C. Vegetation Composition in Bogs is Sensitive to Both Load and Concentration of Deposited Nitrogen: A Modeling Analysis. Ecosystems 18, 171–185 (2015). https://doi.org/10.1007/s10021-014-9820-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9820-2

Keywords

Navigation