, Volume 11, Issue 1, pp 113-124

Reconstructing Anthropogenic Disturbance Regimes in Forest Ecosystems: A Case Study from the Swiss Rhone Valley

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Anthropogenic disturbances of forest ecosystems are increasingly recognized as fundamental ecological processes with important long-term implications for biogeochemical cycles and vegetation patterns. This article aims at reconstructing the extent and intensity of the two most common types of traditional forest uses—forest litter collecting and wood pasture—in the Swiss Rhone valley (Valais) by (i) identifying the spatiotemporal patterns, and (ii) modeling the biomass removal through these practices. Detailed information on agricultural practices and socio-economic context were essential to develop reliable estimates of anthropogenic disturbance regimes. In the Valais, predominately goats and sheep grazed in the forests. The intensity of grazing was a function of the number of grazing animals and the available grazing area. Forest litter was used as bedding for farm animals during the winter. Key factors determining the intensity of litter collecting were the number of animal units, the amount of available substitute products (straw), and the area where litter raking could be practiced. The results show that wood pasture and forest litter collecting were practiced on a significant proportion of the forested landscape in the Valais up to the second half of the 20th century. Until the implementation of forest management plans in the 1930s, almost half of the forests in the study area were affected by wood pasture and/or forest litter collecting. The regulations in the management plans led to an essential reduction of the area available for these traditional practices but likewise to an increased pressure on the remaining areas. The results suggest that the notion of a slow but steady disappearance of traditional non-timber forest uses and the associated effects on forest ecosystems is oversimplified. Quantitative reconstructions of biomass output resulting from these practices confirm the importance of traditional non-timber forest uses for ecosystem development in this region. Furthermore, it is very likely that similar effects have been widespread throughout regions with similar natural and socio-economic context, for example, throughout a significant proportion of the European Alps. This study underlines the importance of environmental history for ecological sciences as well as for forest management and conservation planning.