, Volume 7, Issue 5, pp 498-512

Production, Respiration, and Overall Carbon Balance in an Old-growth Pseudotsuga-Tsuga Forest Ecosystem

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Ground-based measurements of stores, growth, mortality, litterfall, respiration, and decomposition were conducted in an old-growth forest at Wind River Experimental Forest, Washington, USA. These measurements were used to estimate gross primary production (GPP) and net primary production (NPP); autotrophic respiration (Ra) and heterotrophic (Rh) respiration; and net ecosystem production (NEP). Monte Carlo methods were used to calculate uncertainty (expressed as ± 2 standard deviations of 200–400 calculations). Live carbon (C) stores were 39,800 g C m−2 (34,800–44,800 g C m−2). The store of C in detritus and mineral soil was 22,092 g C m−2 (20,600–23,600 g C m−2), and the total C stores were 61,899 g C m−2 (56,600–67,700 g C m−2). Total NPP was 597 g C m−2 y−1 (453 to 741 g C m−2 y−1). Ra was 1309 g C m−2 y−1 (845–1773 g C m−2 y−1), indicating a GPP of 1906 g C m−2 y−1 (1444–2368 g C m−2 y−1). Rh, including the respiration of heart rots in tree boles, was 577 g C m−2 y−1 (479–675 g C m−2 y−1). Long-term NEP was estimated to be +20 g C m−2 y−1 (−116 to +156 g C m−2 y−1), indicating this stand might be a small sink. These estimates contrast with the larger sink estimated at the same site using eddy-flux methods. Several hypotheses to explain this discrepancy were explored, including (a) undetected biomass increases, (b) underestimates of NPP, (c) unmeasured losses, and (d) a temporal mismatch between the two sets of measurements. The last hypothesis appears the most likely.